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Abstract

An uncertain dynamic evolving process has been a continuing challenge to decision prob-
lems. The dynamic random variable (drv) changes which characterize such a process are
very important for the decision-maker in selecting a course of action in a world that is
perceived as uncertain, complex, and dynamic. Using this subjective point prediction algor-
ithm based on a modified recursive filter, the decision-maker becomes to have periodically
changing plausible points with the passage of time.

1. Introduction

An uncertain dynamic evolving process has been a continuing challenge to decision problems.
That process has the following characteristics: the process and the variable are changed with
the passage of time, and actual values of the variable are revealed sequentially as time passes.
The dynamic random variable changes which characterize such a process are very important
for the decision-maker in selecting a course of action in a world that is perceived as uncertain,
complex, and dynamic. Therefore, the decision-makers’ prediction about the dynamic random
variable must be adequately represented in decision analysis.

2. Point Prediction Algorithm

The decision-maker already has a plausible point for each period from his experience and
knowledge by aggregation the information of actual outcomes with time passage. However,
before deciding his plausible points, a decision-maker needs preliminary predict points, derived
from a systematic and mathematical framework and updated with the passage of time, with
subsequent adjustment using his experience and knowledge, especially in undisturbed situations.
Therefore, it is absolutely necessary to develop a systematic and convenient method for deri-
ving the preliminary predict points over periods with the passage of time.
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What kinds of characteristics should prediction method for the preliminary predict points
have in order to be suitable for our purpose? We can describe the primary necessary charact-
eristics as follows:

(1) What method has to make the best use of a small amount of available data; the statistical
time series analysis requires a lot of data to be applied to our problem. In the decision
analysis we usually do not have a lot of data. Most of the data we can have depend on
the interview with the decision-maker. Therefore, it is difficult to use a statistical time
series [2] or a traditional forecasting fnethod [9] directly. In the case of brand new
dynamic random variables, these statistical tools become more unsuitable.

(2) That method should be recursive; to be a convenient method, recursiveness is a desirable
characteristic. The following regression example using an ordinary least square method
shows that the non-recursive approach is complicated in getting optimal results. That is,
the optimal estimates of the coefficients derived by the least square approach [1] are
given as '

&) =(FTF)T'FTY(?) in the model y(&) = (FENT a(t) +ef).
where Y(®) = (5(0), (1), -+, y(¢—1)); the observation matrix
FT(®)=(f(0),f(1), - f(—1)); the trend model matrix
e(¢) =Error at time ¢.

The matrices F(¥) and Y () in the above equation increase with time, and it is very
complicated to calculate the inversion of the matrix (FTF)~!, increasing with time ¢ The
above equation requires the entire history of the observations, Y(¢). Therefore, we should
look for a recursive method which requires only the most recent observation, y(Z), and
the previous state estimate in order to make the calculation simple and convenient.

(3) That method should have the ability of filtering; in order to predict the preliminary
points accurately, that method should have the ability} to distinguish the signal from the
noise in the actual data as the process sequentially reveals these data. Filtering is absolu-
tely necessary since the actual data with time passage contains various kinds of errors.

(4) That method should be practical and available for the application to various trend mod-

els and should be as simple as possible without loss of the decision-maker’s intention of
the trend of the drv.

There are several Kinds of statistical forecasting tools [9] which may be used to solve the
point prediction problem. Among them, a modified linear recursive filtering model is suitable
for satisfying these characteristics of a subjective point prediction. The filtering theory [7]
does not directly provide the answers needed in decision analysis because of the difference in
the problems with which each is concerned. The decision analyst models large-scale systems
and has to make the best use of the little data he can find; while the control engineer, who
has been using the filter theory, typically models small-scale systems and has to be able to
handle a great deal of data in a short time. However, the problem related to the amount of
data can be solved by deriving the aggregate data from the decision-maker's teliefs about
the trend of the drv by means of decision-analysis tools. We can easily understand that the
rest of the necessary characteristics(2), (3), and (4) are satisfied by the linear recursive
filtering theory. In other words, it is possible to utilize the linear recursive filtering approach



as an important forecasting tool in decision analysis by modifying the filtering theory and
deriving the necessary information of the filtering model from the decision-maker.

The linear recursive filtering(Xalman Filtering)theory, however, is based on the assumption
that the distribution of the drv is Gaussian. Only a few drv’s have Gaussian distributions, but
a justification for using the Gaussian assumption comes from the central limit theorem ([4],
p.123). According to their theorem, the limiting sums of non-Gaussian independent random

v ariables, under certain regularity conditions, have Gaussian distributions. Furthermore, in our
case, it is sufficiently satisfactory to use the linear filtering theory as an preliminary point-
forecasting tool since the probability distributions obtained in the encoding and the updating
algorithms are based on Markov process in the non-parametric forms,

The linear filtering theory is based on the linear relationship between state vectors and
input vectors. In our case, the linear relation model is inevitable, since obtaining sufficient
data for a non-linear filtering model from the decision-maker is actually very hard. The com-
putation of non-linear filtering is too complex, even if sufficient data are obtained ([5], p.
174). Moreover, the linear assumption justified by ordinary statistical forecasting models, i.e.,
smoothing/autoregression/moving average/ARIMA[2]. Non-linear relations, however, can be
replaced by linear approximations. Obviously, nearly linear relation functions might be replaced
by straight-line approximations. Linearization can be expanded in a Taylor series in which all
but the linear terms are neglected.

Let p,=f(u;, u,, ---u,) be a differentiable non-linear relation between the mean at ¢ and sev-
eral variables. Expanding on any chosen point (i,° #,% ---, #,°) = #° in a Taylor series gives
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In this research, the time-varying value of the drv is assumed to be modeled as a time-
varying mean with additive noise. The mean of the time-varying value of the drv is assumed
to be a linear combination of knows functions. Under such assumptions, the time-varying drv
can be expressed as a linear system with the.system’s state vector being the unknown para-
meters and present value of the mean of the process. The linear recursive filter can be used
under these circumstances to obtain an “optimal” estimate of the state vector. One of the di-
stinct advantages of the linear recurve filter is that time-varying coefficients can be permitted
in the model.

Can we regard the predicted mean of the drv as the most plausible point on the basis of
the information we have when using the time-varying mean in the linear recursive filter



model? Other kinds of points are also available including mode or quantile (including median).
The selection among the above alternative points depends on the form of loss functions. In
other words, the mode is suitable for an all-or-nothing loss function; the quantile (including
median) is for a linear loss function; the mean is for a quadratic loss functicn [1J, Usually
we use the quadratic loss function in which the loss "is zero for a correct predicticn and is
proportional to the square of the error for a wrong prediction. Consequently, we can use the
mean of the drv as the predict point without loss of generality.

From now on, the general procedure for deriving the preliminary predict points over periods
will be developed on the basis of the linear recursive filte‘ring theory. Based on the prelimin-
ary predict points, the decision-maker can adjust these points easily to his new bLeliefs on the
drv, with his experience and knowledge which have been obtained with the passage of time.

First, let us consider the modification of the linear recursive filtering for deriving the preli-
minary predict point. The trends of the mean of the drv can be generally expressed as
follows:

X,;=p+e(®), t=1,2, - 3
where X, is the outcome of the drv at time ¢,

e is the estimated mean value of the: drv at time ¢, and

e(?) is the error at time ¢.

We assume that e(f) is distributed with the normal distribution (the mean is zero, the vari-
ance is R(¢), and ¢(?)’s are uncorrelaced, that is, <c(©)>=0 and {e(®)-e(s)>=R(¢)-0,, where
d:s is th Kronecker delta and #+#s. Denote {x)> as expectation of x).

After the interview with the decision-maker, we can obtain the recurrence relation as follows:

Uy =+ AT@)B@) t=0,1,2, - 4

AT () is k-dimensional row vector derived from the decision-maker’s information of the drv
trend. Usually, we consider that AT(¢) is fixed with respect to time ¢, that is, A7. For insta-
nce, AT(?) has a form like (1,2, ¢—1, etc.). We assume that A(f) is known for all ¢'s.
Vector B(¢) is k-dimensional column vector, which represents a set of coefficients (time vary-
ing or constant) related with the vector A(¢). And a;(¢) and ;(¢) denote the 7 th element of
A@®) and B(¢), respectively. If we re-express the nonstationary parts (the mean and the
coefficients) which are our concern as follows:

XT(t) = (e, 5,(2), b2(2), ++-, 2a(2)) ()
then Equation (4) is generally expressed as a linear model such as
X@+1D)=COX®+DR®+EQ® (6)

where C(z) is a known transition matrix and its first
row becomes (1, AT(t)). Vector D(¢) is a known input vector
unrelated to the variation of the mean, the coefficients, and
the errors. And E(¢) is an error vector with a normal
distribution (the means are zero and the covariance matrix is
Q(®)). There is no serial correlation in Q(¢).
We can again express Eduation(3) using the new row vector, FT(t)=FT=(1,0,-, 0) as
follows in order to plug vector X(¢) into Equation (3):
X,=FT(0)-X{) +(®) @



Then, Equations (6) and (7) represent a typical linear dynamic system with noise observatio-
ns. Kalman[7] showed that the nonlinear filter obtained from the nonlinear dynamic system
cannot do better than a linear filter when ¢(¢) and E(¢) are Gaussian. Thus, we will obtain
optimal results using the linear system if we can assume that e(t) and E(¢) are approximate
Gaussian. Equations (6) and (7) can be solved using the linear recursive filter [3] to be
developed in this section.

Our main objective is to use this model for forecasting, based on the estimate of X(¢), X,
at the current time. For any positive integer r, we can obtain the following from Equations
(6) and (7):

X(t+7) ='+1ft ‘). X (8

K= FT(@©)-X(t+D)=FT(®) T CG)-X(®)
(We suppose that Equation (6) has no D(¢) term in this case.) X,,. denotes the forecasted
value of X,,, given X'(t). In other words, X,,. means the point to be expected at time f+7
in the future. '

In this case, optimal forecasting can be thought of in terms of optimal filtering when meas-
urements are absent. This is equivalent to optimal filtering with arbitrarily large measurement
errors. That means inverse variance of measurement error R™'(¢+7)—0 and hence gain matrix
K(t+7)—0 in Figure 1. Then, the corresponding equation for uncertainty in the optimal fore-
casting (error covariance matrix prior to the receipt of observation), given update error cov-
ariance matrix G(¢), is

Pi+7t+1)=CU+rc—1DGU+r—1DCU+c—DT+QU+7—1).

This equation provides the mechanism by which past information is extrapolated into the
future for forecasting purposes.

Up to this point, general procedure for deriving the preliminary predict point has been
explained using the linear recursive filtering theory. In order to apply the procedure to real
problems, two noise terms contained in Equations (6) and (7) should be known. These are
process noise E(¢) and measurement noise ¢(¢). They have quite different interpretations that
the errors inherent in observing the true state of the process X(¢) are represented by E(2),
whereas ¢(¢) represents random shocks during the evolution of X(¢). How can we assess the
covariance matrix Q(¢) and the variance R(¢) related to E(¢) and e(f) respectively without
historical data?

The diagonal elements of the covariance matrix Q(¢) and the variance R(¢) are assessed by
asking for intervals that are as likely to contain the value which the variable takes on as
not. To facilitate finding the intervals, the interviewer would propose those which are symm-
etric about the zero mean value in the case of @(¥) and R({). Then the interviewer would
ask the decision-maker if he believes that the interval is as likely to contain the unknown
value as not or, alternatively, if the probabkility of the interval containing the uncertain error
is 0.5. With this information, we can easily derive the diagonal elements of the matrix Q)
and the variance R(¢) from the characteristic of the Normal distribution, as follows:



0(Z0) =075 @
where @(-) is the cumulative probability of the standard normal distribution.
Z, is upper interval point
o is (diagonal element of @(£))¥? or (variance of R(z))V2

The off-diagonal elements of @(¢) are usually assumed to be zero since there are no relati-
ons among the errors of the mean, and 4;(¢)’s. However, it is necessary to assess the off-dia-
gonal elements of @(¢) in a particular model in which the decision-maker considers a correla-
tion among the errors.

The off-diagonal elements, or covariances, can be assessed through the technique of conditi-
onal means as follows: First, the decision-maker is asked to respond to what is the expected
value of random variable Z, for a specific value of random variable Z,, different from the
mean of Z,. Then it is possible to derive the covariance of Z, and Z, from the following
equation ([10], p.22.3.1).

2|20 = T+ wZALL @0 =<zl (10)
where Z,° is a specific value of Z,,

From the definition of E(¢), the means of errors in E(#) are all zero. Therefore,

= _KZyls) 7o
<Zzlzlo;s>_ v<Zu|s> Zl (11)
We can get the covariance of Z, and Z,, g,,, from Equation(11).
02 ="Zy |8>=L(Z,1\% DK Z1,|s)/Z,° (12)

For the k-variate case, the covariance can be assessed simply by assessing the covariance
of each pair of random variables. In this case a hierarchical assessment is necessary to mini-
mize the assessment errors. In addition, we can use constant @ and R instead of time-varying
Q(t) and R(¢) for our convenience.

The next step is to specify the dynamic linear models suitable for various trends according
to Equations (6) and (7). Irrespective of whichever model is specified, it is important to
choose a strict representation involving a minimum number of variables (in other words, mini-
mum dimension of state vector X(¢) in Equation (6) by using the concept of the conditional
independence effectively.

Many models are suitable for various cases. Three general models which have constant
regression coefficients adequately fitted for our trends are specified in Table 1. To achieve
greater flexibility in the fitting of various trends, it is soxhetimes advantageous to include two
or three of these three models in the model. In order to determine the optimum set of weights,
all combinations of weights might be checked at some specified interval, such as 0.01. Yet
this checking would prove to be both costly and time consuming. Consequently, an algorithm
has to be found which will hold down the time and the cost of obtaining optimum weights.

Three algorithms can be applied; i.e., Steepest ascent, Simplex method, and Repetitive
approximation [8]., Among them, Repetitive approximatioﬁ has been the most easily assessible
and efficient algorithm in decision analysis. Repetitive approximation can be represented as
follows. Recursively optimize each parameter until the minimum standard error of assessment
is reached. The standard error of assessment is given by:

— 36 —
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where X,is the assessed value, and
. is the approximate value.
In particular, select each weight in turn. Then find the value that minimizes the standard
error of estimate when the other weights are set at either zero for the first iteration or the
value previously determined for subsequent iterations. Continue optimizing each weight in turn
until the system stabilizes.

Table 1. Dynamic linear models with constant coefficients.

Model i Trend 1 X I c
Consecutive Heaa =0+ b+ Fmpy_y 1+ 1+ 30 7 ap---ml
Xear=pen+e(@+1) /‘u“l\ 10---00 )
* [ )1 01---00 ‘
| .. .
‘ /lt-p/] V0010
" o= peta+ o) +p(t) pe o\ | 111
Additive a 010
Xepi=tln+e(+1) b(0) 00 1
e [ 17@) gt)-q@)
Time- fon= e+ GFO) +Bg (O) + -+ 1g(B) <7 (1) ‘ R
regressive Xeni=ptea+e(+1) . c e .
1 000 1
7(&): Process error of 4.,
Remarks The order of conditional independence in the consecutive model: p+1
J(),g(@), -, and q(): For instance, ¢, 2 ¢t, e, -+

Most dynamic processes in decision problems can be modeled satisfactorily using the assum-
ption of constant regression coefficients. However, the assumption of time-varying coefficients
is often necessary in order to make the output of a model closer, in the decision-maker's
sense, to the data observed from the real-world system. The time-varying coefficient models
can be used effectively only if the decision-maker has a relationship between time-varying
coefficients and their covariances after obtaining sufficient data. As shown in Table 1, the
dynamic linear trend with time-varying coefficients is totally defined as

Xt+1,a=a’(t)Xt,a+b’(t)Xt—1,a+"'+m’(t)Xt-p—1,a+1’(t)Xt-p,a

(consecutive)
+a" OfO+8"Dg@O +--+1"Oq®)
(time-regressive) (14)
+a'"" 48" (@)
(additive)
+v()

In order to change Equation (14) into the linear recursive filtering model, define



XT@) = O, o' @), -, wm (@), 1 ®a" @, b)), 1", 1,0 ) (15)
and ’

Fr{H)= (Xl,a, Xiotya oo Xt—p-—1,a, Xt—p,a,f(t): g, ,q@,a", 1) 16)
Then, we get the same equation as Equations (6) and (7).

The initial values of coefficients, as well as those of variances, should be known before the
application of this linear filtering model. The estimates of coefficients can be used for predi-
ction purposes as if they are known precisely; they are not usually subject to frequent revision.
For convenience, it is better not to revise the estimates of coefficients if the deviation between
the value of the predicted point and that of the observed point happens within the allowance
of the decision-maker and if sufficient data do not exist.

After the dynamic trend has been modeled, the derivation of a method and an iterative
procedure for estimating the state vector of a linear dynamic system from noisy outcomes
should be developed using Equations (6) and (7). Specifically, the linear recursive filter app-
roach states that given a prior estimate of the state vector, X(¢), at time 7, we seek an
updated estimate, X(f), based on the outcome X,. In order to avoid a growing memory filter,
this estimate is sought in the linear recursive form:

XO=K'OXO+KOX, a7
where K'(¢) and K(¢) are time-varying weighting matrices,
as yet unspecified.
By requiring the estimate to be unbiased, it can be shown that

K' @ =I-K@®FT®, 18
and the estimator takes the form
XO=[I-K@® Fr(HOIX®+K@®OX, 19

=XO+K® [Xi~FT()X®)]
We have two kinds of estimation errors immediately after and immediately before a discrete

measurement, respectively, as follows:

dO=X@®-X@® and e() =X - X (20)
Substituting Equations (7) and (20) into (19) yields

e =[I-K@®OFT®] e@)+K@)e(@) for any time ¢. @1
Define the error covariance matrix, G(¢), given the outcomes X, by

G()=<e®e(HT> (22)
and define P(¥) to be the error covariance matrix prior to the receipt of X,

P@)=E®e®O™ (23)
By the definition related to Equation(3),

R =<e@®e®T> (24)
and, as a result of measurements error being uncorrelated,

EOeBTH=Le(®)e®T>=0 (25)

By substituting Equations (21) into (22), taking expectations and using Equations (23), (24)
and (25), we obtain
CO=[I-KOFT®OIP®O U-KOFTOIT+KOROKGT (26)
The criterion for choosing K (¢) is to minimize a scalar sum of the diagonal elements (trace)
of the error covariance matrix G(£). It can be shown that the optimal choice for K(¢) is



Fig.1. The iterative procedure of the linear recursive filter.

Choose 5((0) (unbiased estimate of X(0})
and G{0) (a positive definite symmetric
error covariance matrix).

11

_ State prediction:

X(1)=C(t~1) X(t—1)+E(t—1)

N

Calculate P(9):
P)=Cit—1) Gt—DCt—1" +Qt—1)

)

Calculate Gain matrix:

K)=POF(t) (F©)" POF@©+R@)

L

Observe X,

)

UPdate state estimate:
X=X (t) + K@t X —F®)" X (1)

)

Update error covariance matrix:
G(t)=P{)—K(OFT (67T P(y)

NO
t=t-+1 }<




K@®=PWOFQ® [FTOPOFO+R®I, @7
which is referred to as the Kalman gain matrix. Substituting Equation (27) into Equation (26)
yields

GO =[I-K@OFT®OIP® (28)

Figure 1 shows the iterative procedure of the linear recursive filter. For each period, the

outcome X, is used to update the estimate of X(¢), producing a new estimate, X(¢). The gain
matrix, K(¢), in step 6 is applied to the observation error, X,—F ()T X(f), in step 8. And
the matrix P(¢), the prior error covariance matrix of X given X,_,, is updated by the out-
come X, as the matrix G(¢), the posterior error covariance matrix of X () given X,. The pro-
cedure is initialized by choosing G(0) and X(0).

3. Conclusions

This algorithm suggests a way of systematic prediction for the decision-maker’s plausible
points with the passage of time. In other words, this study shows a practical tool for assigning
a deterministic structure of a dynamic process as the process is sequentially revealed. It has
a robust mathematical framework related to filtering theory so that only a reasonable number
of assessments are required to update the decision-maker's beliefs. In conclusion, this approach
has the following attributes: The filtering to yield a plausible prediction without the random
effects of actual outcomes and an easily assessable form.
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