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Abstract

It is shown that the Shanks sequence E;-transformation and the conventional extrapolation
method are theoretically related. The E,’-transformation method is then applied for the
multigroup diffusion problems. The diffusion code, CITATION, is modified for this study and
the computing time is compared for each iteration tactics.

The Equipose method, in which only single inner iteration for each energy group is carried
for an outer iteration, has been known as the fastest iteration method. However, in the case of
2-group problems, the proposed method, in which the number of inner iteration for the fast and
thermal group is 2 and 1 respectively, gives better convergency than the Equipose method by
about 12%.

The double extrapolation method results in faster computing time than the single extrapolation
method without computing storage problem. It is, however, to note that this method is verified

only for a two-group treatment.
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I. Introduction

Since the computing time for the analysis of
a reactor core by the multi-group diffusion
method is mainly determined by the number of
iterations, the study to find the more powerful
iteration method is inevitable. Many researches
on the iteration have been carried out on
practical problems, but for CITATIONY code,
one of the most widely used reactor analysis
codes in this country, study on the code im-
provement has not been performed yet.

The CITATION has two special features in
its iteration scheme, the extrapolation method
and Equipose method, which are simply explained
as follows:

1) The eigenvalue % is estimated by the

following neutron balance equation.

P
~ AL @

where P=neutron production rate,

k

A=neutron sink rate,
L=neutron leakage rate.

2) Only one inner iteration for each energy
group is done by successive line overrelax-
ation (SLOR) during one outer iteration.

3) Outer iteration is accelerated by the extra-
polation method,

U =g 4 (g — g-D) )

where o is the extrapolation factor.
The above proceduré is known as the Equipose
method?®, The procedure® means single extra-
polation. In some of advanced codes, e.g.,

VENTUREY, a double extrapolation is built in
instead of this procedure®.

In this paper the conventional extrapolation
method is theoretically related with the Shanks
and the double
applied for
multigroup diffusion problems. A modified
Equipose method is tested for two group

squence E,-transformation®,
extrapolation method is then

problems.
I1I. Theory

II. 1. Ei-Transformation of Shanks

Let {4} (n=0,1,2,...) be a sequence of
numbers of functions and
4A,=A,—A,
PA=dA—~ DA, =A 24, + A,

Let ® be a positive integer and define a new
sequence {B, .}, “the #’th order transform of
{A,}”, as follows.

A, peeens A, A,

A, 444, , 44,
A4n—k+l"' AAn A4n+1
A, -eeee dAnps,
B, ,= , for n=k¢,
1 L N TR e

AA, _yeeeees AAn-l 4A,
AA.n—k+1°" AAn A{Ll+1

A,
Now one can introduce an operator E; by
B .=E:(4,) , for n>k, @
Cox»=Ex(Bs,n) =E*(4,), for n>2k, &)
D4, »=E;(Cs,») =E:*(A,), for a>3k. 6
Then E,(A,) is called the ‘E,-transform of
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{4.}%.

If the sequence {A,} is a ‘mathematical
transient’, i.e., if the sequence {4,} is function
of n,

k
An=B+§aiQi, for ¢,<0, ™

where B is the ‘Base’ of the transient and lim

P
A,=B, then determining B in Eq.(7) is theo-
retically possible whenever exactly 2k+ 1 succes-
sive values of A,—for instance, A, A, ..., Az
is known. In practice the elimination of all the
as and ¢.’s would be too tedious, but frequently
one of ¢;, say gs, predominates in Eq. (7). In
such an instance one can ignore a;, g¢; for
i=1,.., k-1,
following estimate for B,

AnAn—z"' Anz—l
An + An—z_ 2A,,_1

This is just the E;-transform of {4,] (n=n,
n-1,n-2), however it is known as the* Aitken’s

so that one may obtain the

Estimate of B=

8%-process’® early. When the sequence A, is a
‘mathematical transient’, the sequence {E;(4.,)}
has a faster convergence than the sequence {4,}
and the sequence {E,3(A4,)} has a faster conver-
gence than the sequence {E;(4,)} and so on®.

II. 2. E;-Transformation
Now let’s apply Shanks’ sequence transfor-
mation to the neutron diffusion equation. The
general iterative form of neutron diffusion
difference equation can be written as follows:
Sr=M71 1/k F) ¢,
or ¢.=T, ¢, ®
where the subscript ¢ indicates the outer iteration
number.
The eigenvectors of iterative matrix T are
defined by
T¢n=ﬂn"/)n.
where ¢, are the eigenvectors and g, are the
corresponding eigenvalues, which are indexed
from N in the decreasing order of g, as
pn< iy < 2 .

The initial error vector e is expanded in

the eigenvector series as
N
e(0)=¢w'—¢0=zlan ¢'n-
n=
Then e" is expressed by

e”’=¢,¢—¢:=él (f"n)l a5 Pn. ®

As the number of iterations increases, the error
vector,

eV—pt ay ¢y,
when T is properly set up to have the spectral
radius less than unity. Thus Eq. (9) can be
rewritten as

Gr=ut ' a; ¢y, (10)

Eq.(10) can be considered as a ‘mathematical
transient’ by definition so that the E;-transfor-
mation can be applied to Eq. (10),
e ¢:\
Eygy="10ma A __Sdp=dei® (g,

‘ 1 1 { btz —2¢:
4¢-y 49
Eq.(11) can be rewrittent form by Eq.(10);
E (@)=¢+0(d—¢i_y), (12)
where
@ 1 Pr— i

e BT Py Pz
Eq.(12) is the extrapolation form and o is
called the ‘extrapolation factor’.

II. 3. E-Transformation

In Eq.(9), if the number of iteration is large
enough and the iterative matrix is convergent,
only the dominant terms g a; ¢y, ' a; ¢,
remain and the other terms fade out, then Eq.
(10) can be replaced by

S=¢+ayprp’ +arpopts’.

Now there are 5 unknowns, ¢., aydp!,
aypopts', therefore the 5 consecutive values,
G o1y Proz, i3, by, should be used to
determine the unknows, especially 4.., i.e., ¢
can be obtained by E,!-transform of {¢,} (z=t¢,
t—1,t—2,t—3,t—4). This procedure can be
easity illustrated by Fig. 1.
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Fig. 1. The Scheme to Obtain ¢, with 5
Consecutive Values of ¢,.

In Fig.1, one can obtain the E,’-transform
of {¢} by using Eq. (12) as follows;
PP =" +5($I” — %) +q($%—¢{%) (13)
where
g= Ay (A —24-p)
Ap(1=4 )2 (1—4)

(—tghy A2k
+ A1) (I—2p)
14)
Xt"q _‘__1 ;fi—l )

¢~y @ a6

A= i1V~ @ -

Eq. (13) is a form of the ‘double extrapolation’.

II. 4. Double Extrapolation Adepted in
VENTURE

From Eq. (13),

¢~—¢:=b: (@—¢e-1) + ¢ (Pi1—di—s),
or '

b b1=b, 1 (b1 1~ P1-2) + 013 (Pr—z—P1—s).
This recursion relationship leads to the equation:
where 1, is defined by Eq. (16).

At some stage of calculation; it is assumed
that the individual error vector contributes in
such a way that the values of b, and ¢, are
nearly independent of the outer iteration ¢, i.e.,
bt=bt-1: ¢:=¢;-;. In that case,

= AiciAi—g (A= Ay)
« A2 (1=2)% =20 (1=2) A=A p)" un

— A
Ag”qx(%l_>

b= - L"‘ —, 18

The above double extrapolation adopted in
VENTURE is different, only in the way of
treatment for ¢;, from that of the E,*~transform.

II. 5. Equipose Methed

If the SLOR method is applied to 2-group
diffusion equations, it leads to the equations:
P =M "V +g, (19
" =My$,""V 1+ g, 2m

In a modified scheme called the ‘Equipose
method’, essentially only one inner iteration is
employed. Hence, although the number of outer
iterations is increased, the total time may be
minimized. The Equipose method estimates the
eigenvalue % by the neutron balance equation
shown in Eq. (1). This Equipose method has
a validity to a large extent as shown in many
literatures.1,%,%

The ability of arriving at a stable solution
and the corresponding rate of convergence are
intimately related to the properties of the iter-
ative matrices M; and M,"® in Eqgs. (19) and
(20). When M, and M, have different eonver-
gence rate each other, it may be possible to
employ the different number of inner iteration
for each energy group, i.e., the number of inner
iteration of Eq. (19) may be different from that
of Eq. (20).

If one define ‘flux variation’ by

|+ — |

ritl= ¢|¢’+1qls @n

the different. convergence rate between M, and
M, may be shown by comparing the fast flux

variation, r**!, with the thermal flux variation,
r2l+l.

III. Applications and Results

1. 1. Two-Dimensional Benchmark Problem

The 2-dimensional geometry of the TAEA
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Fig. 2. 2-D Geometry of IAEA Benchmark

Problem

Table 1. Assembly homogenized 2-group cross
section of TAEA benchmark problem

region| group| D(cm) | X,(cm™) Ea(cm"l)( T s(cm™)

1 1 1.5 0.02 0.01 0

2 0.4 - 0.08 0.135
2 1 1.5 0.02 0.01 0

2 0.4 — 0. 085 0.135
3 1 1.5 0.02 0.01 0

2 0.4 — 0.13 0.135
4 1 2.0 0.04 0 0

2 0.3 . - 0.01 0

benchmark problem?®!® is shown in Fig.2 and
the group constants!V are given in Table 1.
To test our method, the number of meshes are
fixed to 47x47.

In Table 2 is shown

iteration time with the different number of inner

the change of the

iteration per an outer iteration, which is the
same for each energy group. In Table 2, it is
found that the Equipose mothod is validated
for its effectiveness, i.e., when the number of
inner iterations is only one for all energy groups,
total iteration time is minimum. Although the
number of outer iterations is the largest with
single inmer iteration, the total iteration time

Table 2. 2D IAEA Benchmark Problem Iteration

Time
(same no. of inner iteration for groups)
no. of no. of total
group | inner outer iteration kers
iteration | iteration |time(min.)
fost ] 118 3.766 | 1.029383
fast al 2 103 4.447 | 1.029373
fost al 3 71 3.923 | 1.020375
bast 4l 4 78 5.194 | 1.029380
fost | 10 59 8.137 | 1.020377
Table 3. 2D IAEA Benchmark Problem Iteration
Time
(different No. of inner iteration for groups)
No. of | No. of total
group | inner outer iteration kesr
iteration | iteration jtime(min.)|
fast 4l 2 85 3.313 | 1.020382
fost 3 74 3.344 | 1.020387
fast | 3 75 4.100 | 1.029386
fost I B 74 5.636 | 1.029385

is the smallest of 3.766min.
When the number of
different for each energy group, however, the

inner iterations is
Equipose method is not the best one as shown
in Table 3. In case the number of inner iter-
ations for the fast and for the thermal group
is 2 and 1, respectivey, the total iteration time
This
time is shorter than the 3.766min.

iteration
of the
Equipose method by about 1295. Also, in case
the number of inner iterations for the fast and

is the minimum of 3.313min.

for the thermal group is 3 and 1, respectively,
iteration time is shorter than that of the
Equipose method by nearly 1195. Usually, the
order of r,**! in Eq. (21) is 1073~10"% and that
of r,'** is 10°~10! during the inner iteration
per outer iteration for 2-group problems.
When the condition for the single extra-
polation is satisfied during outer iteration in
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Table 4. IAEA Benchmark Problem Comparision of Double Extrapolation to Single

. i i i total
extrapolation inner iteration no. of outer iterati total extra-
. : eration . remark SLOR
method group number iteration | 4o Cmin.) polation no.
inel fast 1 ined
single thermal i 118 3.766 3 restraine
No double
double iﬁztrm al i 118 3.835 3 extrapolation "
¢ 5 occuring
. ast
single thermal 1 7 3.344 1 1 dmible ex- "
trapolation
double fgztrmal ? 75 3.367 1 occurring be- "
¢ 2 . fore conver- -
. t gence
single as 71 3.923 2 "
;hermal 2 2 doublie
ast extrapolation
double thermal 3 67 3.774 2 occurring "

CITATION, to compare the double extrapolation
with the single, the double extrapolation using
Eq. (17) is activated in place of the single when
five consequative computations of sufficiently
small error bound are carried. The comparisons
in Table 4 show that the double extrapolation
is very effective provided the condition for the
double extraoolation is met. When the number
of the inner iterations is 3 for all energy group,
the double extrapolation makes the iteration
scheme faster than the single extrapolation does.
In this case, the total iteration time is 3.774
min., and it is faster than that of the single
extrapolation by about 4%.

When the number of inner iterations is 3 for
all energy groups, and the double extrapolation
using Eq. (14) instead of Eq. (17) is adopted,
and the condition for the double extrapolation
is the same as above, the total iteration time
is somewhat longer, 3.974 min., in spite of its
faster convergence rate for ‘mathematical tran-
sient’. The reason may be that it is not adequate
to apply the condition for double extrapolatton
adopted in VENTURE for the double extra-
polation using Eq. (14).

In Table 4,
occutring condition is not satisfied, the double

if the double extrapolation’s

extrapolation does not occur and the total
iteration time is more or less longer than that

of the absence of the double extrapolation
routine by negligible 1.49%. The reason is that
the double extrapolation scheme needs one more
although the double

condition is not

outer iteration scheme,
extrapolation’s
satisfied.

If the condition for the double extrapolation
is satisfied, however, it is desirable to adopt

occurring

the double extrapolation routine instead of the
single extrapolation routine. In such a case the
only disadvantage of adopting the double extra-
polation routine is that one more scratch disk
file is needed, which can be easily treated.

III. 2. Kori 1 Unit Reactor Core
Y

The geometry of Kori reactor core is shown
in Fig. 3 and 2-group contants obtained in the
reference!? are given in Table 5. To test our

.
Y & 13201053 Lo ST
19.87092 28575 ;.
SR
Ter 8776 §
e Er
e |

~--= No of BP Rods

fa] recion 1 (2.122w/0)

{7 aesion 2 (2.835w/00
QEGION 3 (3,199 w/0)

55304 + WATER

Fig. 3. 2-D Geometry of Kori Unit 1
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Table 5. 2-Group Constant for Kori Unit 1

zone i group | D Xy l T DI

region 1 1 1.4331 0.5432x1072 0.9190x 1072 0.1700x 107!

no BP 2 0. 5487 0.1819 0.1399 —
region 1 1 1. 4430 0.5432x107% 0.9580x 1072 0.1632x 107!

8 BP 2 0. 5498 0.1844 0. 1583 —
region 2 1 1.4263 0.6387 %1072 0.9330x1072 0.1633x 107!

no BP 2 0.5378 0.2375 0. 1665 —
region 2 1 1. 4410 0.6387x1072 1.0200 %1072 0.1525%107*

12 BP 2 0.5392 0. 2427 0. 1962 -
region 2 1 1. 4455 0.6388 %1072 1. 0380 % 1072 0.1485x 10!

16 BP 2 0. 5399 0. 2452 0. 2068 —
region 3 1 1.4218 0.6884x107% 0.9000x 1072 0.1603x 107!

no BP 2 0.5243 0. 2658 0.1804 —
region 3 1 1.4318 0. 6885x 1072 1.0260x 1072 0.1536x107!

8 BP 2 0.5251 0. 2699 0. 1999 —
region 3 1 1. 4366 0. 68841072 1. 0440 x 1072 0.1496x 107!

12 BP 2 0. 5255 0.2720 0. 2107 —
1 1.0703 0. 0.1200x 102 0.0140x 107t

baffle 2 0.5275 0. 0. 2592 —
1 1.9552 0. 0.1150x 1072 0.3504x 107}

reflector 5 0. 4985 0 0. 0554 it
1 1.4732 0. 0.2530%x 1072 0.1731%x107¢

barrel 2 0. 4372 0- 0.0734 -
1 0.9248 0. 0.3340 x 1072 0.1055% 107

water+S.S. 5 0. 4888 0. 0. 2047 -

Table 6. Kori Unit 1 Problem Iteration Time unrestrained!’.

(varying no. of inner iteration for groups)

no. of | no. of total
group | inner | outer iteration SLOR
iterationliteration| time(min.)

ﬁiitrmal } 97 2.981 unrestrained
ftilllsetrmal % 58 2.106 "
fast | 3| w 2.370 ”
fast 13 69 3. 261 1
fast ol & 93 2.943 | restrained
fast 4l 2| s 3.624 "
fast 1 2| w 2. 147 "
fast ol 3| s3 2.905 "
method, the number of meshes are fixed to
46%46. As done for the previous benchmark
problem, the total iteration time with the

different number of inner iterations is tabulated
in Table 6. The table shows the cases in

which the SLOR 1is either restrained or

In case the number of inner iteration for the
fast and the thermal group is 2 and 1, respec-
tively, the total iteration time is shorter than
that of the Equipose method by 27% for the
restrained SLOR and by 29% for the unre-
strained SLOR.

Similiarly to the previous benchmark problem,
one can also deal with the double extrapolation
using Eq.(17) as shown in Table 7. In Table
7, although the double extrapolation doesn’t
occur, the inaccurate occurring of the single
extrapolation can be repaired by adopting the
double extrapolation routine as shown in case
the number of the inner iteration is 3 for all

energy groups.

1V. Conclusion

The results of applications of the method of
varying the number of inner iteration for each
energy group in 2D-problems indicates that the



40 J. Korean Nuclear Society, Vol. 15, No. 1, March, 1983

Table 7. Kori Unit 1 Problem Comparision of Double Extrapolation to Single

extrapolation inner iteration no. of outer, it:.::atilon total extra- remark SLOR
method group number iteration time(min.) polation no.
single fﬁiﬁ.ma] i 93 2.943 3 restrained
doubl fast 1 9% 2. 996 3 no doulile.
ouble . extrapolation 4
:hermal ; occurring
. ast
single thermal 3 53 2.905 2 "
fast 3 no double
double thermal 3 48 2.597 1 gxégflz;g;)rllagtlon "
single {flitrmal i 97 2.981 3 unrestrained
fast 1 no double
double thermal 1 100 3.068 3 g}éz;z;;;?é:tmn ”
method is acceptable for a two-group treatment. 513 (1962).
This method is faster than the Equipose method 3. T.B. Fowler, M. Tobias, ORNL-2967, Oak

in the iteration convergence. Specially, in case
the number of the inner iteration for the fast
and thermal group is 2 and 1, respectively, the
results are the best with about 1295 improvement
in the iteration convergence over the Equipose
method. The double extrapolation is also desira-
ble to be used in the CITATION code.
However, it is necessary to study further the
condition for the double extrapolation, especially
for the E,%-transform double extrapolation. The
method of varying the number of inner iteration
for each energy group in 2D-problems is verified
only for a 2-group treatment. For other multi-
group problems further investigations are needed,
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