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Selection Conditional on Associated Measurements

Woon Bang Yeo*

ABSTRACT

In this paper, a random subset selection procedure for the choice of the k best objects out
of # primary measurements Y; is considered when only the associated measurements X; are
available. In contrast to Yeo and David (1982), where only the ranks of the X's are needed,
the present procedure uses the observed X-values. The approach is illustrated numerically
when X and Y are bivariate normal and the standard deviation of X is known.

1. Introduetion

We consider the selection of the % best objects out of # when, instead of measure-
ments y; ({=1,-.-,#) of primary interest, only associated measurements x; are avai-
lable. For definiteness we assume that high Y-values (i.e., large y:) are desirable
and that X and Y are positively associated. The best object then corresponds to the
largest Y-value. As in Yeo and David (1982), henceforth referred to as YD, it is
assumed that the #» pairs (x;,:) are realizations of (X;, Y:), which are # indepen-
dent random couples with c.d.f. F(x,y) and p.d.f. f(x,y). We wish to choose the
smallest subset which includes the % best objects, with a probability at least equal
to a pre-assigned value P*(0<P*<1). In YD this problem is treated by a procedure
requiring only the ranks of the x;, Here we show how the actual x;-values can be
used provided the standard deviation of the X; may be taken as known. Madsen
(1982) has recently considered an approach of this kind in a different context. See
also Portnoy (1982).

For given n, F'(x,y), and P*, the size s of the chosen subset will vary with the
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observed x;-values. There is an interesting connection with YD where s is fixed.

Some illustrative numerical results are provided in the bivariate normal case.

2. Probability of Correct Selection

To construct the desired subset of size s containing the largest £ objects with
probability TI (%)= P* (specified), we require the conditional probability
n sk

H (x):Pr[{Y[ﬂJa AR YL"—S+11} D{Y(")9 ttty Y("-‘Hl)}:[ (1)

5k
where Y,;, is defined to be Y;|X;=x), Y is the j-th order statistic with Yo<Yo
<< Yo, and Xy, is the realization of the j-th order statistic X, Y-variate
associated with X, is called the concomitant of j-th order statistic (See e.g. David,
1981) but in our case Y; means the concomitant of X conditional on X,=x
and Y,;, (j=1,-,n) are independent with the distribution Fy;,(»)=F,(»;). The
event in (1) is explained as follows.

(i) Yinossn is one of {YVen_spisy Yinosuzs oo Yo}

(1) Y, oo Yines; <YVinoasn

(iii) Among Yim_se1s -+, Yemy exactly (B—1) Y., are greater than Y zyp and

exactly (s—k) Yy, are less than Yoz,

Hence noting (i)--(iii) and conditioning on Y1+, the probability in (1) can be
expressed by
M0={" TROE T - F )T FuOFL), @

n sk

where the summation extends over all permutation (j,, ja, *++, fs) of (B—s+1,n—5+2,

wee,n—1,#) for which j; <--»<jioy and ja<oer <Jjs-u. Note that
N@=f IF aro
n@= £ 5 RGP A<s<m. ©)
It will be convenient to call the present approach conditional and that in YD

unconditional.

We consider now TI(x) when (X, Y) is bivariate normal BuN(us, pts, 012, 0,2, 0),
n sl

with 0<p<1. Substituting in (3) gives
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n s i=n-s+ld ~0i=1
iFJ

mo(z+ Tt X=X Vg od, @

where @(2) and ¢(z) are the standard normal c.d.f. and p.d.f. Note thatnIZI_l(z)
depends on ¢, and p, but not on the other parameters. In practice, the standard
deviation of the auxiliary variate X can often be taken as known. From previous
experience one is also likely to have an idea of the range of p.

Example 1. Arranged in increasing order of magnitude the first 10 random normal
deviates given in Beyer (1968) are reproduced at the top of Table 1, the body of
which gives values of 1IO"[S(}‘LC) for selected values of p. See the Appendix for the
method of computation. The entries for p=0 or s=10 are obvious and agree with
(4.

Suppose that #=1 and p=0.7. Then table 1 shows that for P*=0.9 the required
subset size is s=6, with actual conditional probability of correct selection 0.9386.
When £=2 with the same values of p and P*, the subset size must be s=7 with

conditional probability 0.9388.

3. Relation to the Unconditional Approach

Averaging (2) over repeated samples ¥ gives the unconditional probability

I}_;——Pr{s objects with the largest X; include the % largest Y,

for which expressions are developed in Yeo (1982). With the help of these expressions
YD have prepared tables in the bivariate normal case which immediately provide
the desired subset in the unconditional case (i.e., when only the ranks of the x; are
used).

Example 1 (continued), For n=10, p=0.7 we read off the following values from
Table 1 of YD.

Probability TT that s objects out of 10 with largest x;-values include the objects
10 5: %

with the & largest y;-values.

k/s 1 2 3 4 5 6 7 8 9 10

1 0.4261 0.6396 0.7706 0.8563 0.9134 0.9511 0.9752 0.9896 0.9971 1.0
2 — 0.2332  0.4470 0.6201 0.7532 0.8513 0.9199 0.9644 0.9896 1.0
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Table 1. Values of TI(x) in (2), for the X, shown when (X,Y) is BuN(0,0,1,1,p)
105k

Xeiy ~1.501 —0.690 0.060 0.464 ©0.906 1.022 1.179 1.372 1.394¢ 1.486
s kip 0.0 0.7 0.8 0.9 0.95 0.99

1 1 0.1000 0.2201 0. 2503 0.3042 0.3648 0.5408

1 0. 2000 0.4131 0.4607 0.5389 0.6172 0. 7839

2 0. 0222 0. 0960 0.1216 0.1721 0.2347 0.4163

3 1 0. 3000 0. 6000 0.6622 0. 7590 0.8472 0. 9800

2 0. 0667 0.2711 0.3370 0. 4593 0.5979 0. 9060

3 0.0083 0.0726 0.1044 0.1778 0.2858 0.6918

4 1 0. 4000 0.7398 0.7984 0.8792 0. 9406 0. 9986

2 0.1333 0.4649 0.5517 0. 6905 0.8172 0. 9895

3 0.0333 0. 2297 0. 3065 0. 4522 0.6145 0.9462

4 0.0048 0.0698 0.1080 0.1973 0.3224 0.7104

5 1 0. 5000 0. 8487 0. 8951 0.9487 0.9801 0.9999

2 0.2222 0.6553 0. 7417 0. 8548 0.9322 0. 9989

3 0.0833 0.4461 0. 5523 0.7122 0.8401 0.9917

4 0.0238 0.2470 0. 3428 0.5134 0. 6758 0. 9354

5 0. 0040 0. 0876 0.1414 0. 2599 0. 3996 0. 6835

6 1 0. 6000 0. 9386 0. 9691 0. 9933 0. 9994 1. 0000

2 0.3333 0. 8393 0. 9096 0.9753 0. 9967 1. 0000

3 0. 1667 0.7030 0. 8162 0.9377 0. 9885 1. 6000

4 0.0714 0. 5389 0.6812 0. 8657 0. 9651 1. 06000

5 0. 0238 0. 3487 0. 4966 0.7318 0. 8998 0.9993

6 0. 0048 0.1533 0. 2589 0.4804 0.7078 0. 9836

7 1 0. 7000 0.9791 0.9927 0. 9994 1. 0000 1. 0000

2 0. 4667 0.9388 0.9755 0.9972 0. 9999 1. 0000

3 0.2917 0. 8753 0. 9435 0.9912 0. 9996 1. 0000

4 0. 1667 0.7827 0. 8388 0. 9767 0. 9983 1. 0000

5 0. 0833 0. 6530 0. 7981 0.9423 0.9925 1. 0000

6 0.0333 0.4770 0.6473 0. 857 0. 9642 1. 06000

7 0. 0083 0. 2490 0. 3931 0. 6206 0. 7838 0.9775

8 1 0. 8000 0. 9968 0. 9996 1. 0000 1. 0000 1. 0000

2 0. 6222 0. 9887 0. 9981 1. 6000 1. 06000 1. 6000

3 0. 4667 0.9729 0. 9945 0. 9999 1. 0000 1. 0000

4 0.3333 0.9448 0. 9864 0.9997 1. 0000 1. 0000

5 0. 2222 0. 8969 0. 9689 0. 9986 1. 0000 1. 0000

6 0.1333 0. 8159 0. 9302 0.9939 0. 9999 1. 0000

7 0. 0667 0. 6765 0.8398 0. 9687 0.9971 1. 0000

8 0. 0222 0. 4300 0. 6100 0. 8279 0.9425 0. 9999

9 1 0. 9000 0. 9997 1. 0000 1. 0000 1. 0000 1. 0060

2 0. 8000 0. 9988 0. 9999 1. 0000 1. 0000 1. 0000

3 0. 7000 0. 9967 0. 9998 1. 0000 1. 0000 1. 6000

4 0. 6000 0. 9920 0. 9994 1. 0000 1. 0000 1. 0000

5 0. 5000 0. 9826 0. 9980 1. 0000 1. 06000 1. 0000

6 0. 4000 0. 9635 0.9941 1. 0000 1. 0000 1. 0609

7 0. 3000 0.9235 0. 9811 0. 9995 1. 0000 1. 0000

8 0. 2000 0. 8343 0. 9332 0. 9924 0.9998 1. 0000

9 0. 1000 0.6113 0. 7347 0. 8761 0. 9593 1. 0000

10 k 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000 1. 6000
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For £=1 in Example 1, use of the actual values of the x; led to s=6. If in repeated
samples we were always to use s=6, then the resulting average probability of
correct selection is 1];[(3_:10.9511. Repeated use of s=5 gives 1%—I5f0'9134> P*. In other
words, as inspection confirms intuitively, the x; have happened to come out rather
unfavorably for our aim of choosing a small subset. But when k=2, the required

subset size is $=7 in both cases to satisfy the pre-assigned probability P*=0, 9.

APPENDIX

The entries of Table 1 were calculated from (2) (with o.,=1) by use of the 64-
point Gauss-Hermite quadrature of
" erGa,

where in the present case

GH)=

ﬂ.]i/g rij:¢[ J?H—A(xj,—xi)]

k- s$—
ST U-0 3 2L+ ACe,~ 50} T 0LV B+ ACr— 2.,

A=p/(1-p",
The acuracy of the numerical evaluation is up to four decimal places. As a check

we can see the values corresponding to 0=0.0 or s=n.
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