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Central Limit Theorem for Lévy Processes

In Suk Wee*

ABSTRACT

Let {X.} be a process with stationary and independent increments whose log characteristic
function is expressed as ibut—z“azuzt—{—tg ),(exp(iux)—l—iux(l—;—xz)“)dv(x), Our main

result is that x”(Sl " dy (y))/(g prax 2du(y)+02)—>0 as x—0 (resp. x—o0) is necessary, and
sufficient for {X:} to “have {A:} and {B:} such that (X.—A.)/ B,;@_,n(o, 1) as t—0 (resp.

t—>OO)‘

1. Introduction

Let {X.} be a process with stationary, independent increments taking values in R,

whose log characteristic function is expressed as
(1.1 ibut—27S0%A 1] o (exp(iu) —1—iur(1+x))dv(x)
where v is the Lévy measure satisfying
{227+ 2du(x) <o,
The problem we consider in this paper is to find a necessary and sufficient condi-
tion for Lévy process {X.} to have {4,} and {B.} such that as {—0 and oo,
(Xi—A0B Lo, 1),

9 . .. .
where — denotes convergence in distribution and #(0, 1) represents a standard

normal random variable,
It is known that for a distribution function F(x) to belong to the domain of

attraction of normal law, it is necessary and sufficient that as x—00,

(0, 2F D)/, aF )~
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(See Gnedenko and Kolmogorov (1968), p. 172.)
We are able to get the analogue for this result replacing the distribution function
with Lévy measure both for {—0 and #—co, In fact, our result is that, as x—0 and

co,

1.2 x2<5|y‘>xdu(y) )/(Smszyzdv(y)+02>—+0
iff there are {A.} and {B:} such that

(Xi— A)/Bon(0, 1D
as ¢ tends to 0 and co respectively.

There has been no attempt to characterize the Central Limit Theorem by Leévy
measure and this work is motivated by Pruitt (1981) which shows the similar role
played by distribution function for random walk and by Lévy measure for Lévy
process. The technique used here is similar to the one in Kolmogorov and Gnedenko
(1968).

But the main difficulty in our problem is that » is not a finite measure in general,
and we are considering the case both for small and large £ It turns out that both
for t—0 and f—oco, B,~t":L(}) where L(#)is slowly varying at 0 and oo, The
centering is irrelevant for small £, since we can easily obtain that as {—0

A./B:—0.

But the situation for f—oo is somewhat different. In fact, if (1.2) holds as x—co,
then EX, <co and A~tEX,, since by Lemma 2.2(2), Sx3/(1+x2)dv(x)<oo and by
differentiating the characteristic function, EX,=>bt+t Sx3/(l~:-x2)dv(x). Thus un-

less the mean of X, is zero, we have as {—oo, A:;/Bi—+o0.

2. Preliminaries

We define, for x>0,
G ={ v,
K@=x(] _staun+o?),
M@={ 51 du),

N={ 31+ 1du().

bl
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We prove two lemmas which will be used for main results.
Lemma 2.1,

It Li_r(r)lG(x)/K(x)=0, then x2K(x) is slowly varying at 0.

@ If lxi_rgG(x)/K(x)zo, then x2K(x) is slowly varying at oo,

Proof. For y>1, we have

SxﬂylsnxyZdy('y) < 772G(x>
Suy[s,ydeCy)+02 KW

which implies the slow variation of x*K(x) both at 0 and o,

Lemma 2.2,

im G _ i NGO
) If lxlg)l 4O =(, then 1£rg1m)——0.

im G _
@It }cl}'g IO =(, then

M)=§ = /(1+59a(5)

converges, and

im0
Proof.
(1) By integrating by parts, we have for 0 <x <1,
(2.1) INGD =NDIS  Iy1dv(s)
=K —2K(@)+{ K(»)dy.
Define,

YKy if 0<y<d
I(»= .
0 it y>1.
Then [ is slowly varying at 0. Making the change of variable, y=1/z, we have
I(»)=I(1/2)=L(2)
where L is slowly varying at co. Also

(2.2) $ooEOy={ s=tCdy={  L(2az

and for x <,
(2.3) 2K(x)=x"'L(x™),
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By using theorem 1 of Feller (1966, p.281), (2.2) and (2.3), we have as x—0,

§,, Kdy [ Ldz

T K(x) a xx"L(x'l)
Combining this with (2.1), we have as x—0,
NGO,
xK(x) ’

since xK(x)=I(x)/x—00,

(2) This can be proved similarly.
3. Main Results

Qur final result will be obtained by proving two theorems, Theorem 3.1 and 3. 2.
Theorem 3.1.
(1D HmG(x)/K(x)=0 iff there exists {B.} such that for any >0, as {—0,
x-0

(3. 1) Bz—>0,

G.2 etK(eBH—1,

3.3 tG(eB:)—0.

In this case, for any >0, as {—0,
3.9 tN(eB.)/B:—0.

(2) UmG(x)/K(x)=0. iff there exists {B:} such that for any &>0, as {—co,
(35) Bt—’3o,

3.6) st K(eB:)—1,

3.7 tG(eB)—0.

In this case, for any ¢>0, as f—oo,
(3.8 tM(eB:)/B:—0.

Proof, (1) Let B, =inf{x : K(x)=<1/t} for ¢ sufficiently small. Then we have B.—(0
as [—0. Because of the slow variation of x2K(x) at 0, we have B.>0. Since x2K(x)
is nondecreasing, for 0<Jd <1, we have
IK(B)>(1--0)%K((1—8)B:)> (1—0%).
From this and the right continuity of K(x), we obtain, for { sufficiently small,
tK(B)=1.
Furthermore, since x2K(x) is slowly varying at 0, we have for any >0, as {—0,

(eB)*K(eB.)/(BSK(B))—1,
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so we get (3.2). For the proof of (3.3), we use

G(&Bt)
K(€Bt)

which tends to 0 as {—0. Conversely, suppose that {B.} satisfying (3.1), (3.2) and
(3.3) exists. Let B|jne1y <x<By;m, and B""'=B,u.1,, B"=Byn.

tG(eB:)= tK(eB:)

Then we get
G(B*)=G(x)=G(B)
K(B"*)+G(B)Z=K(x)>K(B")—-G(B"*),
e
(1/mG(B™) ~ G
((+1D/m) LA/ (n-+DIKBD+A/(n+1D)GB )T — K(x)
A/(m+1)HG(B)

- (ﬂ/(n+1))(1/n)K(B )=/ +1)G(B)
which proves the assertion.
To prove (3.4), setting x=¢B, in Lemma 2.2(1), we have, as {—0,

tN(EBp) — N(EB:)
B, eB.K(eB:)

(2) This can be proved in the same way.
Theorem 3. 2,
(1) imG(x)/K(x)=0 iff there exists {B:} such that as {—0,
x=0

et K(eB:)—0.

B 1X-Zon(0, 1).
(2) UmG(x)/K(x)=0 iff there exist {A.} and {B.} such that as {—oo,

B,"(X,—A,)—%n(o, D.
Proof. (1) We will prove that there exists {B.} for which (3.1), (3.2) and (3.3)
hold iff B, 'X,—n(0,1) as {—0. Then by Theorem 3.1, we are finished. Suppose
that there exists such {B:}. Let A.=(M(B.)+b)t. We use the log characteristic
function of B 1(X.—A.);

(3.9 — Tt ] (exp(iusBet) ~1—iux B dv(x)

. 5B i tt) .y (exXP(iux B, iuxB, v
+f oo, (exp(uxB ) = Ddy(x)— iuxN(B)B.™.

Let u# be fixed. The first two terms in (3.9) can be written as

(3.10) =gt 6/ B du()

where 0(y)/y—0 as y—0 and @ is bounded on compact sets. By (38.2), as {—0,
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o ~ B (@)= Lo
- 2B, t+tS|x|gB‘ 28,2 du(x)_ ”tK(Bz)/2 5

Because of (3.2) and (3.3), for any given %>0, it is possible to choose &<,
t(e, ) such that for |y| <e,
O(uPy®) <nuty*
and for ¢ <t(e,n)
1G(eB)<n, K(eB)<2.
From these, we have for {<t(e, ),

], OCGuR/ BYDACO=t{  0((ux/BYDdu(x)

+t5€3r<lx| sB.ﬁC(ux/Bf)2>dV(x)

<onu+cy.
Thus we have proved that for any #, (3.10) converges to —u2/2 as {—(. By
Lemma 2.2(1), we have as {0,
tulN(B:)/B:—0.
so we complete the proof of the convergence of B, '(X,—A.) to #(0,1) by showing
that the second integral in (3.9) converges to 0 as {—0. By (3.3), we have

t S|x1> sB.<eXp(iu'x/B') —Ddv(x)|<2tG(eB.)—0,

as t—0. Next for the proof of B:"*A,—0, (3.2) and the slow variation of x2K(x)
at 0 imply that as {—0,
t/Bi~B,/(B:K(B:))—0
Thus we have, as -0,
| By A =t(M(B¢)+b)/B,
<tB:2K(B:)+t|b|/B:—0.

Conversely, suppose that

@
Bt_lXt_—")n<O, 1)
so for any u, as {—0,

2442
— (2715?2 t+1

but . iux N, u?
Bt +tS<eXD<lux/Bg>’1“‘W)dﬂ(l) ?.

Therefore as -0,

2,2 \
—Zp et (cos(ux/ By —Ddu(xn)— L.

Define, for any Borel set A for which 0 A,



106 In Suk Wee
vi(A)=t(B:A).

r(A={ 2/(1+2dvi()

and
T {0} =t0'2/Bt2.
Then
— gzg; t+t5(cos(ux/Bt)— Ddv(x)
= [(cosux) =1+ 3/ x%d7.(x)
where

[Ccosuy- D+ a0/5]_ =—w/2.
We will prove that for {fi}, £:x1ce, {ru} are conditionally compact under weak

convergence. For & sufficiently large,

S(lfcos ux)(1+x2)/x%dra.(x)<u?/2+e,
Thus we have, for & sufficiently large,

3“1Sl“qdi’u(x)gB_lSl”ﬂ<1+x2)d7’t;(x>£1/2+€.

Also
S (52(1 —co8 u.r)du>(1+x2)/x2dru(x)g Sz(u2/2+ e)du,

lx1>1 0 0
S0

1 : _sin2x N )
25|x|>1d;"<x>£5|x1>1(1 2% ><1 FaB)/xtdra(x)<4/3+ 2e.

We have proved that {r.} are uniformly bounded. There exists a>0 such that

for any ¢,
S(S:,/T(1~cos ux)d”>(1+xz)/xzd“(@z%gmzrdh(x)

Therefore, by Fatou’s lemma,

lim Tdrzh(x)gl;zi?g—g—S:/TG(I —cos ux)(1+x2)/x2dra(x) )du

kowd|x|2
T T
é—*S u*/2du
a Jo

=(6aTH)™,

This proves that {r.} are conditionally compact. Suppose that for some {£'} Z{ts},
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Teg=>7*,
Then along {£:},

_ o'’ . 4 _iux/B,
(3.1 Wt+t§(exp(zux/Bz) 1 W)du(x)

:S(exp(z'ux) —1—iux(1+x2) "D+ 22 /x2dr(x)
—>S(exp(iux) —1—tux(1+x¥)" DA+ 2D /x%dr*(x).

On the other hand, along {{.'},

(3.12) — Wy T AD | (expGiun/ B —1—iux(1+ 3371 B )du(x)
2B“t Bt
——1?/2,

By (3.11), (38.12) and the uniqueness of Lévy representation,
S(exp(iux)—l-iux(l+x2)“‘)(1+x2)x‘2d7*(x):-u2/2,
so 7*{0} =1, and 7*((—o0,0)1U(0, o)) =0.
Since this is possible for any subsequence {{:’}, we have
e, = ¥,
Thus for any >0,

ean(th’) :tk<02+ SIXISEBt deVCx)>/B"2

=S!x|55(1+ 20dr: (£)-r*{0} =1,
and

H:G(eB.) =tk5 dv(x)

|x|>€Etk

={ie> ()
={ (D /xdr, (0
——»SlwE(1+x2)/x2dr*(x):0.
Therefore, we have, for any ¢>0, as {—0.
et K(eB)—1
and
tG(eB:)—0.

(2) This can be proved basically in the same way, but only difference is that we-
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are not able to get, as t—oo, B, 'A.,—(. Instead, we can obtain that EX, exists and
if EX,=0, then as {—s0, A./B:—0, using Lemma 2.2(2).
Remark 1.

It remains open whether or not the analogue of our result holds for the convergence
to a stable distribution. There is an analogous condition for a distribution to belong
to the domain of attraction of stable law, so our conjecture is that there would be

some similar conditions under which

B(X—A) oy
where Y has a stable distribution.
Remark 2.

It is easy to check that for Brownian Motion {X.}, (1.2) holds for x—0 and oo,
and A.=bt, B.= +Fo. For Compound Poisson Process with log characteristic func-
tion A(p(u)—1) where ¢ is Characteristic function of a distribution function F,

W(B)=AF(B1{0}*) and ¢*=0,
SO

6o _ %0, 4P W

2

Iyizx

In particular, for Poisson Process, (1.2) holds for x—oco, but not for x—0. Thus
for {—co,

Bi=yi, A=2t.
For another exxample, consider Lévy Process with Lévy measure given by

1
"o 7 1) @

dv(x)= x

and o?=9.

Then for x large and small,

N 1
G(x) *¥(log?x)
and
C/x* for x large
K(x)~
1/(&%logx]) for x small
where C is a finite and positive constant. So (1.2) holds both for x—0 and oo and

for -0, B.= T L({) where L(¢) is a slowly varying function at 0, and for f—o0,
B:"\‘ \/—C—t, aﬂd A:"\’bt.
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