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ABSTRACT

Dwivedi, Srivastava and Hall (1980) derived the first and second moments of generalized ridge
estimators. In this paper we consider the m'® moment of a generalized ridge estimator and tabulate

its skewness measure.
1. Introduction

Hoerl and kennard (1970 a,b) proposed the ridge regression method of estimation and
defined a class of estimators characterized by a scalar. By reducing the regression model
to its canonical form, they defined the generalized ridge regression estimator and sug-
gested the existence theorem of the scalar and an iterative procedure. Dwivedi, Srivastava
and Hall (1980) derived the exact expressions for the first and second moments of the
generalized ridge estimator employing the initial choice of characterizing scalars as
recommended by Hoerl and Kennard (1970 a), and tabulated the values of the relative
bias, the relative mean squared error and the efficiency with respect to the ordinary
least squares estimator for a few selected values of the noncentrality parameter and the
degree of freedom.

In this paper we consider the mt moment of a generalized ridge estimator and

tabulate the skewness of its distribution.
2, The Model and the Estimators

Consider the canonical form of a multiple linear regression model
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y=XB+e. @D
where y is an nXx1 vector of observations, X is an #Xxp matrix, with full column
rank, of # observations on p explanatory variables, 8 is a pX1 vector of regression
coefficients and e is an nXx1 vector of errors with
E(e)=0 and E(ee')=0c*I.. (2.2)
Following Hoerl and Kennard (1970 a), we assume that X' X=A where A=diag (4,
------ ,As) 1s a pXp diagonal matrix. Then the generalized ridge regression estimator
of 8 is given by
gr=(A+K)"' X'y @3
where K is a diagonal matrix with nonnegative elements kyyeereee , b, as the characterizing

scalars. The least squares estimator of 3 is given by

b=A"X"y @0
Then
E(8*— ) =[(A+K)"4-1,18, (2.5)
E(G*—B)(8*—B) =0 M A+ K) 2+ E(B*— B E(F*— )
=02 A(A+K)+ (L= AU+ K) DB (L= AU+ K)™D  (2.6)
and
(e =)' (B~ D)= 5, ZHese @

provided the ks are nonstochastic.
Differentiation of (2.7) with respect to k: yields

0 * 1O R% — 225(1i+ki)(kiﬁi2-gz> _

i=1,2,"p.
So the optimum values k:(opt) =0%/87%, i=1,2,*,P.
Hoerl and Kennard (1970a) suggest an iterative procedure to estimate k;. This prccedure
may be described by
Bisy =S/ (%), 1=1,2,2 b, Q2.9
where the bracketed sukscript j is used to denote the jt iteration and b is the least
squares estimate of §; and
S2=(y—Xb)' (y—Xb)/v (2.10)
is an unbiased estimator of 0% ~where v is the degree of freedom. As an initial

estimate of 8: take
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{B*i(o)zbi, Z:I: 2,"',f—’~ (21])
Replacing %: in K by %, to form K and substituting it in (2.3) leads to an adaptive

estimator of g8, i.e.,

B*=(A+K) 1 Xy, (2.12)

3. The Main Theorem

We assume that e follows a multivariate normal distribution N(Q0, 021,). If we parti-

tion X as

X= (xly Koy ooy x?): (3' 1)
where x;, i=1,2,+-+,p, isthe i* column vector of X, then the 7 element of §* is
given by §* =x:'v/(A+ kD). 3.2

THEOREM: The ™ moment of B:* of (3.2) is given by

E(ﬁA[*m>IMZ_ ,i(y+m‘1)! (VZI)y 9172 F(y+%)

wm(m—1)1 G2
: P(j+ﬂ1;f_1)[’ (j+3m_2+1> <_;T> 3.9
= <y+].+3m+2u+1.) r (H%) i
if m is an even integer and
Bbry= Sn 5 oy (1) ZT L0 3)

)
L mtyt L 3m42 22\

0 r(;+. :23m+v>+§<]+ ‘ 23 > '(ﬁ%) G0
U ‘

™3

I

7

if m is an odd integer, where ;= y2,8/0.

PROOF: When e follows a multivariate normal distribution N(0, 021), it is well known

that the distribution of b=A-! X’y is a multivariate normal N(8, 524", Let

Z— NAb: X'y

o O A

then the distribution of Z; is a normal with mean ; and variance unity. From (3. 2),
we can write
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ﬁ-*: xily = ZS
' A:i+S%/bi* \/2 22+ 8% ot

=% iy (550 ( ze=v)|

where b;=x,'y/2; and V=vS%/a?

Thus
o e B - 5) ()

Since( v:l > ( Z-ZK 7 ) <1, by Taylor series expansion, we can expand

1-(51) (e )]

so that
R A 5 _Gtm=D! (v—l )( v )
: A" (Z2+ V) S yl(m—1)! v Z2+V
- 8" i (y+m—1)! (u—l )’ ZnVeE
zim(m—1)! ;o y! 9] (Z2+V)ym+r -
Therefore

EG™)= T 5, Am=DL(2SL) 8| (ZZ+IZ)J

Due to Dwivedi ef al. (1980), if m is an even integer

e leo
B =T 5, TS Ly <p<,,/2> :

B s ) (10
)

2
"B r(yj+ 2L vl ) r(j 1) q

.m

I e E s
TA(m—1)1 550770 iy oy 1"<y+ i+ B—"ifz”—ﬂ—) P(.H——;—)

I’<j+ m+2v+1 ) 1’(]:+ Smg-l > (—%—rﬁ)i
7!

w18

and if m is an odd integer

e—%fi‘

S et
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1,<]-Jr m+2u+2 > P(j+ 3mz+2 ) (”;—Tf)’

T G

(y+m—1)1< v—1 )yzzm_%P<y+%>

T'm—lo;’;“l)! yi:o io 91 ;<%>
) ) (et
o T 1(y )

4. Skewness

Dwivedi ef al. (1980) showed that
@ B,-* is biased in the direction which is opposite to the sign of g,
(i) the relative mean squared error decreases as 7,2 increases, and as v grows large,
it decreases as long as 722,
(iii) the magnitude of relative bias is a decreasing function of z2 while it is an
increasing function of v,
3v) B,«* is more efficient as long as 782, Substantial gain is achieved where v is
large and 7.2 is small.
It is interesting to note that the relative seth moment
RM(B*)=E(B*/:)
is a function of v and 7.2 only. Let
di=[E(B*—E() 1%/ [EB*— E(B*))*)?
and
dy=E(B*~EBNY[EB*—EB))e.
Then the Pearson skewness measure of the distribution of A:* [Kendall and Stuart
(1969)]

vdi(dy+3)
2(5d,—6d,—9)

is a function of v and z.? only, and can be evaluated for all values of v and 7%

Sk(f*)=

Table 1 shows the skewness measure of the distribution of B* for a few selected
values of v and r.%. The skewness decreases as 7.2 increases. And as v increases, it

increases, decreases, and then increases again.
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Table 1. The Skewness measure of the distribution of :*
Vi
~1_r‘z 1 2 5 10 15 20 30 40 50 60
2 3
.01 .371 . 395 . 391 . 392 . 394 . 396 . 400 .403 . 405 .407
.05 . 364 . 391 . 386 . 387 . 389 . 391 . 3985 . 398 . 400 .402
.10 . 345 . 380, .375 . 375 . 377 . 379 . 383 . 386 . 388 . 390
.20 . 291 . 346 . 338 . 337 . 340 . 342 . 346! . 3501 . 352 . 354
.50 . 157 . 224 .213 .211 . 213 .215 . 219 . 223 . 225 . 227
.70 . 110 . 166 . 156/ . 154 . 156 . 157 . 160 . 162 . 164 . 166
.90 . 083 . 126 . 118 . 116 117 . 118 . 120 . 122 . 123 .124
1.00 .073 111 . 104 . 102 . 103 . 104 . 105 . 107 . 108 . 109
2.00 . 030 . 043 . 040 . 040 . 039 . 039 .039 . 039 . 039 .039
5.00 . 010 011 .011 .011 .01 . 010 . 010 .010 . 010 . 009
10. 00 .017 .021 .019 . 083 .186] -.340{ -.546 . 000 . 000, . 000
20.00 . 003 . 004 . 004 . 004 . 004 . 004 . 004 . 004 . 005 . 005
50.00 (-223. 605I-223. 605|-223. 605/-223. 605|-223. 605/-223. 605|-223. 605|-223. 605-223. 605 -228. 605
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