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ABSTRACT

A stress-strength model is formulated for s out of k system of identical compo-
nents. We consider the estimation of system reliability from survival count data from
a Bayesian viewpoint. We assume a quadratic loss and a Dirichlet prior distribution.
It is shown that a Bayes sequential procedure can be established. The Bayes estimator
is compared with the UMVUE obtained by Bhattacharyya and with an estimator
based on Mann-Whitney statistic.

1. Introduction

Suppose a system ccnsisting of k ccmpcnents is successful in its missicn if at least
s(1 < s < k) of these components survive a random stress. We assume that the component
strengths Yi,---, Y. are independent with a common cumulative distribution function
(cdf) Ge¥ where % is the class of all continuous univariate cdf’s. Further, the com-
mon stress experienced by each component has cdf FeF and is assumed to be inde-
pendent of the Y’s. The system reliability, the probability of s or more of Y-, Vi

exceeding X, is then given by

R=Rus(F, ©)=£(D{(1-G)G+dF. D
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While many works for estimation of R have been performed assuming availability
of independent measurements of component strengths and external stress, Bhattacharyya
(1977) dealt with estimation of R from survival count data when groups of compenents
are tested under common stresses. In each replication of the experiment, a string of
components is exposed to a realization of the external stress and, rather than measur-
ing the strengths and the stress, only the number of survivors is recorded.

Interest in this setting stems from the fact that numerical measurements of strengths
and stresses often involve use of sophisticated instruments. As such these may be for
more expensive than observations of survival and failure which may be obtained simply
by visual inspection of the components. Of course, numerical measurements are expec-
ted to be more informative than counts. However, it may be economically advantageous
to collect count data with a large number of samples than obtaining numerical measu-
rements with fewer components, especially when the cost of numerical measuring is
large enough relative to that of the component.

In this paper, we develope a Bayes sequential procedure (BSP) for estimation of R
from survival count data under some assumptions. A Baves fixed sample size estimator
is compared with the uniformly minimum variance unbiased estimator(UMVUE) obtained
by Bhattacharyya (1977) under the classical mean squared error (MSE) criterion.
Simultaneously, we suggest a way of assessing prior informations that is essential to
BSP. In addition, efficiencies of our result relative to that based on measurements of
strengths and stresses when /" and G are related by ‘Lehmann alternative’, is also

evaluated.

2. Statement of the Problem

This section gives a decision theoretic formulation of the problem along with the intro-
duction of some useful notations.

Suppose that the experiment consists of identical replicates in each of which a string
of m(m > k) components is tested under a common random stress. The component
strengths are assumed to be independent and identically distributed (iid) with cdf G=.&
and the stresses in different replications are iid with cdf Fe %, Let Z ; denote the

number of survivors in the j-th replication and define

Nu=% I(Z=i) 2.1)
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=number of replicates with 7 survivors in # replicates
for 1=0,1, -+, m. Then the joint distribution of N.=(Nom, Nin, -+, N,.,)’ is a multinomial,
M(n, p), with » trials and with the vector of cell probabilities p=(po, p1, **, P»)’ given by
b =(7)fa=-GyG aF, i=0,1,,m, 2.2)
Since the observable data N, is a sufficient statistic for p, it is necessary to express

R in terms of p. Note that

$ (a-or6- £ E (") a-6xvo

i=g J

50 HOEN] () oo @

where we make the convention that (¢)=0 ifa<b or b < 0. Integrating both sides of
b

(2.3) with respect to F yields

whete h=Cho b, i) and =) £ (D7) for i=0,1,m

The prior distribution of p is assumed to be a Dirichlet, D(»), given by the probability
density function (pdf),

g(P):P(v)}m;IOEF@i)]“p,-“"‘ (2.5

where v= (g, v, >+, va),v= S v; and v; >> 0 for {=0,1,--,m. Then the expected value
=0

and the covariances of p are given in Johnson and Kotz (1972) as follows
Elplyv]=v-ly 2.6)
and
Covlp[v]= {2+ 1D}"'ICOL)
where a (m+1) x (m+1) matrix C(b), b=(by, by, -+, bn), is defined by

(CBYan=b:(b=0), b=3 b,

{C()} iy =—bib; for i=]. @
Note that the posterior distribution of p given N, is D(»+N.).
The loss function is assumed as follows; Let ¢ > 0 denote the relative cost of sampling
per unit replicate as regards to the squared error of the decision rule d. If » replications

have been taken, the loss is given by



4 S.S. Choi & J.J. Kim

Lin,d,p)=(R—d)*+nc
=(h'p—d)2+nc. 2.8

3. Bayes Sequential Estimation Procedure

Since the BSP consists of a stopping rule and a terminal decision rule, we first consi-
der the latter. It follows from the loss function (2.8) that the Bayes estimator for fixed
sample size # is the posterior expected value of R. That is, if we observed N, after
n replications, the terminal decision rule is

R.=RWE[(p|v+N.]
=+n)"h'(¥+N,)

:(p+n)-1;§°hi(vf+1\fi,.) G.1

with the posterior expected loss
U.(N.)=E[L(n, R., p)|v-+N.]
={+m)2@+n+ 1D} 1A' [CO+N)]k+nc (3.2

:(u+n+1)"{(u+n)'1$°h§(vi+1\/'i,.)—ﬁzn} +nc

Note that the Bayes estimator (3.1) coincides with the UMVUE obtained by Bhattacha-
ryya (1977) in the case of vague prior v=0.

Since the marginal distribution of N, is a multivariate binomial-beta, BB(#, v) [John-
son and Kotz (1969)], the conditional probability of N, given N,_, is
P.[N.=N,.1+e|N._]= i+ Niw-p)/ 0 +0—1), i=0,1,-, m, 3.3
where e; is the (u+1) dimensional unit vector of which the i-th element is 1. By
taking conditional expectation of each element of

C(+N,) given N,.,, we have

E[C(v+N)N..,J=@+n—1)/(+n)-C(»+N,). 3.4
Hence
ELU-i(No) = U(ND N =[G+ +n—1)]1R [CG+N..)lh—c
<[R2@+m)]IF-—c<0 3.5)

for all n> J= <1/2¢ V?—v >where <> denotes the integer part of ¢,
It follows from (2.8) and (3.5) that BSP can be truncated at J and the stopping rule

can be completely determined by the backward induction. Define recursively as
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V(N)=Us(N5)
and Vo,(V)=min{U.(N.), EL[Var1:(Nar) | N1} (3.6)
=min{U,(No), n Z=°Wi+ Nin) /@ +1)+ Vari(Na+ e}
for n=J-1, J—-2,--,0.
Then, by DeGroot (1970), the following is estabilished. '
Theorem 1. The Bayes sequential estimation procedure for the general problerﬁ
specified by (1.1), (2.5) and (2.8) is given as follows;
(a) Stopping rule: Stop sampling after taking n(0<n<J—1) replications if and only if
U.(N.) < Vu(Nw)
where U,(N,) and V.(N.) are given by (3.2) and (3.6), respectively. Stop sampling
at n=J.

(b) Terminal decision rule: After the sampling is terminated with observations N,

estimate R as shown in (3.1).

Examples of the procedure for the estimation of 2 out of 3 system reliability is
illustrated in Table 3.1, 3.2 and 3.3 for m=3,4 and 5, respectively. The prior distr-
ibutions are assumed to be D(0.6,0.6,,0.6) in all cases. The value of # in the table
represents the number of replications or the stage of sampling. The set in each cell
represents the sample point N, where the sampling should be continued. The complement
of the continuation set represents the sample point where the sampling should be ter-
minated. The expected Bayes risk of the procedure, V,(N,), is compared with that of
the Bayes fixed sample size procedure (BFSSP). The expected Bayes risk of BFSSP,
Ve, is computed by

Table 3.1; Continuation sets (N,-+ N, N;+ N;) for m=3

n ¢=0. 003 | €=0.0025
0 All All

1 All All

2 All All

3 All All

4 3,1,02,2),(1,3) All

5 3,2, 3 4, 1),(3,2),(2,3),Q,4
[ None (47 2)) (37 3): (2’ 4)
7 None

ViNo | 0. 03862 0.03573

Ve | 0. 03885 0. 03601
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szm"in{E[U,.(N,.)]}
=min{{(v+#*)(v+ 1)1 k' [C)Th+n*e, [+n*+ D+

R [CO)IR+ (* +1)c}
where n*= <{[c(v+ 1] R [CQ)IR} 2 —v>.
Table 3.2; Continuation sets (No-+N,, N, N;+N,) for m=4

@7

no ¢=0.003 ¢=0.0025
0 All All
1 All All
2 All All
3 (3,0,0,(2,1,0,(2,0,1),(1,1,1 (3,0,0),(2,1,0), (2,0, 1), (1,2,0)
(1,0,2),(0,1,2), (0,0, 3) (1,1, 1), (1,0,2),00,1,2),(0,0,3)
4 (3,0,1),(2,0,2),(1,0,3) 3,0,D,(21,1,02,0,2),(1,1,2
(1,0,3)
5 None (3,0,2),(2,0,3
6 None
Vo(No) , 0.03324 { 0. 03100
Ve [ 0. 03343 | 0.03125
Table 3.3; Continunation sets (N, + Ny, Ny, N3y, N+ N for m=5
n [ ¢=0.003 ' ¢=0, 00025
0 All All
1 All All
2 (2,0,0,0),(1,1,0,0),(1,0,1,0) All
(1,0,0,,(0,1,1,0), (0, 1,0, 1D
(O’ 0, 1’ 1)’ <07 0’ 0’ 2)
3 (2,0,0,1),(1,1,0,1), (1,0, 1, 1) (3,0,0,0), (2,1,0,0), (2,0, 1, 0)
(1,0,0,2) (2,0,0,,(1,1,0,1), (1,0,2,0)
1,0,1,1),(1,0,0,2), (0,2,0,1)
0,1,0,2), (0,0, 1,2), (0,0, 0, 3)
4 None (3, 0,0, 1), (21 0,1, 1)1 (2a 0,0, 2)
1,1,0,2), (1,0, 0, 3)
5 None
Vo(Vo) [ 0.03018 0. 02840
Vs ’ 0. 03034 [ 0. 02853

4. Comparative Studies for Moderate Samples

In this section, the Bayes estimator (3,1) is compared with Bhattacharyya’s UMVUE

based on survival counts and with the Mann-Whitney statistic based on numerical measu-
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rements under the classical MSE criterion.
If N, is observed after (fixed) # samples are obtained, the UMVUE is given in Bha-
ttacharyya(1977) as
R.=n'.K'N, “4.D
where & is the same as that defined in (2.4). And the MSE of (4.1 is
MSE(R,)=Var[R.|p]
=n LR [C(p)lh 4.2)

2

ef g (o)

where C(p) is defined as (2.7).
The MSE of the estimator (3.1) given p is represented as
MSE(R,)=Var[R.|p] +(E[R.|p]—R)>, R=h'p
=@+n)"2nh' [C(P)Ih+*(Ry—R)*, Ro=(h'v)/v. (4.3)
Then the relative efficiency of the Bayes estimator to the UMVUE is given by
e(R,; R.)=MSE(R,)/MSE(R.)
=[(n+v)/m]2(1+v*p/m)"! 4.4
where p=(R,—R)*/h'[C(p)]h.

Note that e(IAE,.; R.) is determined by v and p, for given # and p and that the smaller
value of p (i.e., the more accurate value of Ro) gives the higher efficiency. In fact, if
p<n!, then e(I%,.; R.) is always greater than 1 irrespective of v. It is also noticeable
that, when p is fixed, the efficiency is greater than 1 for 0 <v <2p! and that e(]?‘n;
R.) is maximized at v=p~! with maximum value 1+(®p)™".

Hence the following suggestion may be possible to determine the parameter vector v
of a prior distribution; Suppose that we have some prior information about the structure

of R, that is, we have some prior feeling that a (m+1) vector =% fi,ofa), fi20

for all 7 and }m: fi=1, would be probable for p and the variance of R would be ¢ > (.
i=0

Then, if we determine v={_vg, Vi, "+, ¥n)’ a8
v=Rh'[C(HIk/o,
and vi=vf:, 1=0,1,-,m, 4.5)

the relative efficiency e(ﬁ"; R.) in (4.4) could be expected to be close to its maximum
value unless f and ¢ are much different from their true values.

Relative efficiencies for 1 out of 2 system with m=5 are listed in Table (4.1). Prior
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probability guesses /i=(?) (0.5)%, i=0,1,--,5 with prior guesses 5—0, 005, 0.01, 0.05,
0.1 are applied to real probabilities pi:G)ﬂ‘(l—ﬂ)s", i=01,---,5 where ¢ is varied
from 0.3 to 0.7 for moderate sample sizes #=20. It shows that the efficiencies are
relatively good in general except in considerably 1) pessimistic cases. Hence the Bayes
estimator (3.1) could be expected to be better than UMVUE (4. 1) by considerate choice
of £ and 2) conservative evaluation of o.

Table 4.1 : Efficiencies of Bayes estimator relative to UMVUE

7] 0.005 0.01 | 0.05 0.1
0.3 0. 469 0.800 1.071 1.047

0.4 1.207 1.307 1.104 1. 054

0.45 1.932 1.541 1.113 1. 056

0.5 2.44 1.642 1.116 1.057

0.55 1. 864 1.524 1112 1.056

0.6 1.015 1.215 1100 1.053

0.7 0.262 0.534 1.030 1.035

Another interesting comparison results from a consideration of the UMVUE of R for
a single component (s=%=1) system under the sampling of numerical measurement.
Consider a sampling scheme such that; A random sample of # stress measurements are
observed in addition to observing an independent random sample of mn strength measu-
rements. With the general nonparametric model F=.%, Ge=% , let (X, -, X,) and
(Y4, e+, Yan) denote the stress and the strength measurements respectively. As noted in
Birnbaum (1956), the UMVUE of R is given by R,*= W/ (mn*) where W:'i}l ri:l I(Y:>
X:) is the Mann-Whitney statistic.

Considering once again the Lehmann subfamily F =G4 we have

MSE(R.*)=Var[R,*|1] (4.6)
=[2/(2+1)+(mn—1)2/(2+2)+(n—1){1—2/(2+1)+1/(2 2+1)}
—n+mn—1)22/(A+1)%]/ (mnd).

On the other hand, MSE of the Bayes estimator from survival counts with the same

number of samples under F =G+ is given by
MSE*(I?,.):(u+n)'2{n2(2+m+1)/[m(2+1)2(1+2)]+v2(R0—2/(2+1))2}
“.n

1) the cases in which we give too much confidence to inaccurate f.
2) It is safer to take a moderate value of ¢ than to assess the value of & too small.
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where R, is defined as (4.3) with A;=i/m, i=0,1,---,m. Then the efficiency of Bayes
estimator based on counts relative to UMVUE based on measurements for the case s=k
=1 and F=G* is given by

e*(R, ; R)=MSE(R,*)/MSE*(R.) (4.8)
Table (4.2) provides numerical values of e*(ﬁ,. ; R.*) for m=5. Even prior guesses
fi=1/6, i=0,1,+,5 with prior variance guesses ¢=0. 005, 0. 01, 0. 05, 0.1 are applied to
the cases 1=1.0,1.2,1.4,1.6,1.8 for moderate sample size n=20. v is calculated as

(4.5). The efficiencies of P relative to R,* are also listed for comparison.

Table 4.2 : Efficiencies of K. relative to R.* for the case s=k=1 and F=G*

. 4] 0.005 | 0.01 0.05 ] 0.1 | ercRar?
1.0 4,057 2.167 1.078 0. 968 0. 864
1.2 2,682 1912 1.065 0. 961 0.859
1.4 1.439 1.478 1. 044 0. 950 0.852
1.6 0. 861 1.114 1017 | 0.938 0.845
|18 | 0.572 0.815 0.990 | 0.928 0. 840

i e(R.; R.*)=MSE(R,*)/MSE*(R.) is the efficiency of R. relative to R.* where MSE*(R.)
=n" 1A+ m—1)/[m(A+1)*(A+2)].

Acknowledgment

The authors wish to thank the referee for his careful reading of the manuscript and

for his valuable comments.

REFERENCES

(1) Bhattacharyya, G.K. (1977). Reliability Estimation from Survivor Count Data in a Stress
Strength Setting, Journal of the Indian Assoc. for Productivity, Quality and Reliability,
2, 1-—16.

(2) Birnbaum, Z.W. (1956). On a Use of the Mann-Whitney Statistic, Proceeding of the third
Berkeley Symposium on Math. Statistics and Prob., 1, 13—17.

(3) DeGroot, M.H. (1970). Optimal Statistical Decisions, McGrow-Hill, Inc., New York.

(4) Johnson, N.L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate
Distributions, John Wiley & Sons, Inc., New York.

(5) Johnson, N.L. and Kotz, S. (1969). Distribution in Statistics: Discrete Distributions,
Houghton Mifflin Company, Boston.



