56/ X

WA TS REMEOIM L Bl EEDREAR

A Study on the Sliding Rigid Indentor over the- Viscoelastic Layer
Supported by the Elastic Half-Space

H Rt A ERE & =R
J.W.Nam+S. W.Cho +S.P. Chun

E 0

PR 2 KB Rt MR TE R AR duds HE clneh A 35Tl
A¢) or#HEEe} vha 54 mabshgivh

, z‘j%%%oﬂx‘lﬂl ZA ] Zepu orBEFol A7t AR A4S TR, FRVAS T
PEForel] wdted T3 FAL o FALEe) vlAAF] TS Tadc dEE
2o mope MurgdFel EAL FAse AE, F a<l/2, a—1/2, o>1/200 w2bd =2

chz e,

o\l

o

2
e Sy

B ol 2FtE mlAr Al ¥ ZAbslw AW rlnd £, Avd F2 5
A, BrAd A8 @4 (E,) 3k MekAdEel BPKHMEAT (B b, F Eo/Ev ol el d3peE
¢ 4+ o, ‘

2 whA A7 Ak Eol| wete whubsbw 45, = 248 FE/F neld =355 uhA
Al zolalch

2R3 W] A4 (a) #F AR ARDASF ZAHL FH SEE LA 2 2T (a) 7}
1o 47belxw WEbg e B4 Fas FGastel] wskd A FAF 5 o T4Es

olel 7t gl =IA wAek

® i

NOMENCLATURE Go :  Shear modulus of elastic half-
space ' [kgf/cm2 ]
Ai,Ap,Bq,By:  Arbitrary functions of p. . G(t) : Shear relaxation modulus of

B(p, q) : Beta function. viscoelastic layer.
Eo : Young’s Modulus of elastic E(t) : Relaxation moduius  of
half-space [kgflcm2 ] viscoelastic layer in uniaxial

Ev : Quasi-elastic modulus of tension.

viscoelastic layer Ct :  Frictional coefficient [-1
[kegf/cm? sec @] K : Derived constant (=3-4n) [—]
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D 4 .+ Dimensionless total load [—]
U . : Sliding velocity of rigid in-
dentor [!/sec]
G : S-coordinate of apex of cylin-
drical indentor [cm]
k : Coloumb’s frictional coef-
ficient -]
h : Thickness of viscoelastic layer
[cm]
Ch(t),Sh(t) : Hyperbolic functions.
u : Displacement x-component
[cm]
v : Displacement y-component
' [cm]
sgn(p) Sign of P [+ -]
) : Galilean variable, s=x+U;
' [cm]
f(s) : Shape function of rigid in-
dentor
g(s) : Dimensionless pressure distri-
bution in the contact interval
_3 ay(s,o)
2 UYE, {(1-4)} .
z(p.y) Fourier transform function
=em® D gey)e .
A(t) : Bulk relaxation modulus of
viscoelastic layer.
r(x) : Gamma function.
] : Dimensionless thickness of
viscoelastic layer. = hjw [-]
v(t) : Poisson’s ratio of viscoelastic
layer (-]
O Oy Ty Stress components [kgf/cm?® ]
ex 6y Txy G Strain components -]

1. Introduction

Sliding and rolling contact problems in
linear viscoelastic subject have received con-

siderable attention during the last decades.

= BRI THWEE/Vol. 5, No. 3, 1983/57

Through an experimental work on the
friction between a rolling rigid sphere and
balsam wood surfaces with varying lubrica-
tion, Atack and Tabor showed the resistance
to be independent of the state of lubrication,
and concluded that the rolling friction arose
primarily from viscoelastic properties of
balsam wood (1).

And similiar results were obtainied from
the experiments with other materials, ie.
rubbery and glassy polymers.

The studies on this phenomenum were
made by Hunter(2), Morland (3), (4), Golden
(5); and Nachmann, Walton and Schapery (6),
(7) by using the linear viscoelastic model.

Walton, Nachmann and Schapery treated
sliding contact problems by direct Fourier
transformation for the powerlaw (8) visco-
elastic half-space, and derived a closed-form
of analytical solution (6). -

In this paper, it was attempted to suggest
the approximate method to obtain the pres-
sure distribution and frictional coefficient
under a sliding rigid indentor over the visco-
elastic layer supported by elastic half-space.

2. Formulation of Problem

As shown in Fig. 1., a rigid indentor is
sliding with steady translational velocity U to
the right over the viscoelastic layer, whose
thickness is 0 termed dimensionlessly, sup-
ported by elastic half-space.

Rigid indentor

‘K‘——w—ﬁ : L
s
y
viscoelastic
h ) layer

elastic
half -space

Fig. 1. Sliding rigid indentor over the viscoelastic
layer supported by elastic half-space.
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2.1, Basic assumptions

In order to simplify the problem, the
following assumptions are submitted.

1) The particular problem interested in
this paper is the two dimensional pro-
blem,

2) The sliding of a rigid indentor is the
steady translational motion ie., U is

contant,

2.2. Formulation of an integral equation

The mathematical formulation on force

balance is as follows:

=1 O Tyy
R 9
W +8y 0 2-1
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Ty +iz:£,_= [0 (2-2)

K= Oz

Relations for linear elastic stress-displace-

ment are (8):
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Relations for the linear viscoelastic stress-

strain relation are:
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Owing to the governing equations (2-1)~
(2-9), stresses and displacements at the boun-
dary could be obtained (9).

For algebraic convenience, the particular
problems in which the viscoelastic layer is sup-
posed to be imcompressible i.e., ¥ = 1/2 and
no Coloumb’s friction exists i.e., k = O; are
discussed in this article.

From the continuity of stresses and di-
splacements i.e., u, v at the interface between
the viscoelastic layer and elastic half-space,
and the boundary conditions at the surface of
viscoelastic layer on which a rigid indentor
is sliding, the integral equation is obtained as
fdllov:ing (6):
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Here the function ¢y(h) is to be put as

1) (h) +1i Pa (]‘l)
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where,
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where, t =

3. Thick layer problem,

After mathematical treatments the fol-
lowing integral equation is obtained,
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are exponentially small for

large h, the integral equation may be written
as follows, '

s
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If it is assumed that viscoelastic layer is
thick i.e., 0 2 1, f(s) and g(s) can be expressed
as asymptotic expansions in terms of gage

functions P, Pz, etc.

£ (s) =10 (s) 4 &Pf) (8) + ey (8) A-+veeeeen- (3-4)
g(s) =go(s) + g1 (s) + gy (s) 4+orermmeeees (3-5)
where, e =1/8

P,~n—a

Thus, the expansion terms are found in the

‘uncoupled integral equations as,
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In each case of integral equations (3-6),
the right-hand side is always the same genera-

lized Abel-type integral operator.
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Therefore, if the coefficients ap are com-
puted by numerical integration and the shape
of indentor i.e., f’(s) is given, approximation
to normal traction and frictional coefficient

can be found.

4. Example and discussions.

The problem for a cylindrical indentor of

radius R is considered.,

— _(s;c,)’ g ] eenns -
f(s) = TR +d for 0=s<1 (4-1)

Here, only three terms in the asymptotic
expanisions of f'(s) and g(s) are sought, and
the rest terms are neglected (10).

The solutions of first terms equation
(3-6a), differently behave for a<1/2, a=1/2,
and a >>1/2.

when a<1/2, a>1/2,
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when a=1/2,
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with Co= 1 trrreeermmrmmmiaaaes seiees (4-6)

The preceding work exhibits the first
approximations to P and Cf as following

.Cg

e
b, = 2(1_ i) Tl (4-7)

Crn=a(—a)/R(1—a) B—a) e (4-8)

From the second terms. equation (3-6b),
no bounded solution exists unless Gy =azPR
and then g. (s} = 0, (10). Therefore, the

second approximation to p and Cf.

The solution of third terms equation
{8-6c) may be found from eqgs. (4-2), (4-3)
and (4-5) by the simple expedient of replacing
R by 1 and go (s) by -g2(s)/2, Po.

Ra,

=-§F)— [RC.fo+ (Co_l)Pn]“. ...... (4_11)

From this last results, third approxima-
tion to P and Cf are obtained as follows,
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Finally, the approximations to g(s), ¢,p,
Cf, are obtained as,
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According to' the sign of ap in (4-15),
(4-17) the shift of the apex of indentor and
the variation of the frictional coefficient due
to finiteness of layer are expected.

Fig. 2. represents the pressure distribution



expressed demensionlessly fin the contact
_interval of indentor sliding over layer.
The curves go off very differently with
the values of a.
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< - o1
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Fig. 2. Characteristics of normal component, g (s) to

indentor surface along the contact interval.

The values of coefficients, ap are com-
puted by numerical integration of the equa-
tion (3-3).

From the equations (3-3), (2-11) the
values of coefficients, ay depend upon tlﬂa, if
o is prescribed.

In this paper, the particular problem in
which Poisson’s ratio of elastic half-space,
7 is 0.5 and the velocity of rigid indentor, U

© is 1000/sec, is considered.

Then, since t/0% "(1-0)(U/9)*/(Eo/Ey),
the values of coefficients, ap depend upon
1/(Eo/Ev).

From Table 1, Table 2, as the value of
Ey/Ey increases, the value of dominant
coefficient, a, decreases.

And, as the value of E4/Ey approaches
to infinity, the value of dominant coefficient,
ag approaches to the value when rigid support
exists.

From the equations (4-15), (4-16), (4-17)
and Table 1, Table 2, the values of P,C, and C¢
are computed,

In order that the three terms approxima-
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tion converges rapidly, the values of & and 6
are chosen as 0.25 and 5x10, 0.5 and 5x10°,
0.75 and 5x10”.

The Fig. 3, shows that the apex of cylin-
drical indentor shifts to the right as E4/Ey
increases.

The Fig, 4 shows that the frictional coef-
ficient decreases, as Eo/Ey increases.

When & is 0.75, the values of C and Cg are

' nearly constant,

a [/ "
“0—0—8—:( 25 50 L1 000/sec
-t %% 0.5 5000 1,000/sec
—_ .
E » ! . -— - _o_
5’ o
i )
1 2 Eo /Ev ["]
Fig. 3. Apex of cylindrical identor vs, ratio of
moduli.
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Fig. 4. Frictional coefficient vs. ratio of moduli.

Physically speaking, the harder elastic
half-space material becomes, the lesser the
frictional coefficient becomes, and ultimately
the value of Cf approaches to the value when
rigid support exists.
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The increase of (B/U)a is equivalent to
the increase of E,/Ey.

Therefore, it can be shown that the value
of E4/Ey has less influence on the friction
coefficient, as the viscoelastic layer beocmes
thicker. '

Also, the faster the rigid indentor is
sliding, the larger the frictional coefficient

becomes.

Table 1. Related values of coefficient with
a=0, 25 4=50

8n
a a
Eo, Ev ag 1 2 a3

0.10 | —0.355 2.451 0.671 3.885
0.25 0.04¢ 1.447 0.365| —3.096
0.50 0.083 0.864 0.138 | —2.334
0.75 0.134 0.581 0.013| —1.815
1.00 0.161 0.404 | —0.067 | —1.420
1.25 0.178 0.280 | —0.124 | —1.105
1.50 0.190 0.187 | —0.166 | —0.844
1.75 0.198 0.114 | -0.198,| —0.625
2.00 0.204 0.055 | —0.224 | —0.436
2.25 0.209 0.006 | —0.244 | —0.273
2.50 0.230 | —0.357 | -0.261 | —0.129

©0 0.236 | —0.547 | —0.398 2.162

Table 2. Related values of coefficient with
a—-05  §=5 000

Eo/pyl" | 20 a1 az a3

0.10 0.386 0.502 0.013| —1.592
0.25 0.409 | —0.332 | —0.745| —0.745
0.50 0.519 | —0.095 | —0.489 | —0.075
0.75 0.528 | —0.180 | —0.540 0.270
1.00 0.534 | —0.227 | —0.564 0.479
1.25 0.535 | —0.257 | —0.577 0.618
1.50 0.535 | —0.278 | —0.585 0.718
1.75 0.536 | —0.293 | —0.590 0.793
2.00 0.536 | —0.304 | —0.593 0.851
2.25 0.537| —0.314 | —0.595 0.898
2.50 0.537 | —0.321| —0.697 0.936

oo 0.538 | —0.391 | —-0.605 1.311

e e e e

5. Conclusion

It is studied, in this paper, how the pres-
sure distribution and frictional properties
appear differently in connection with the
sliding velocity, « values of viscoelastic
material specified with power law and its
thickness of layer supported by elastic half-
space when a rigid indentor is dragging over
the layer.

In order to determine the appearance of
pressure distribution and frictional coefficient
along the conmtact interval, an adequate in-
tegral equation is formulated. Through the
computation with the formulated mathemati-
cal equation, the followings are derived.

The pressure distribution deviates widely
in dependance on the values of exponent «,
whiqh représents the physical properties of
the viscoelastic layer (Fig. 2).

And frictional coefficient varies with the
velocity of the rigid indentor, thickness of
viscoelastic layer and the ratio of Young’s
modulus of elastic half-space (Eg) to quasi-
elastic modulus of viscoelastic layer (Ey),

expressed in form of Ey/Ey (Fig, $,4).
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