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Theory and Application of Systems Analysis Techniques to the
Optimal Management and Operation of a Reservoir System(])
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V. Nonlinear Programming

Nonlinear programming has not enjoyed the popularity that LP and DP have in water resource systems
analysis. This was partially due to the fact that the optimization process is usually slow and takes up
large amounts of computer storage and time when compared with other methods. The mathematics involved
in the nonlinear models is much more complicated that in the linear case and the nonlinear programming
unlike DP cannot easily accommodate the stochastic nature of inflows to the system.

However, it is a formulation of the most general mathematical programming and gives the foundations
of analysis to the other methods. Nonlinear programming can effectively handle a nonseparable objective
function and nonlinear constraints which many programming techniques cannot. Futhermore, it usually
includes quadratic programming, geometric programming and separable programs as a special case which
can be used iteratively as a master program or as a subprogram in large-scale system problems. Search
techniques have also been used in conjunction with simulation in order to evaluate the performance
functions of alternative systems (Maass et al., 1962).

An essential preliminary to systems planning and control is a clear statement of objectives. The Water
Resource Council’s Principles and Standard (1973) established two equally important objective for federal
water resources projects: national economic development and environmental quality. Later, it was revised
in 1980 to include regional economic development and other social effects. For a system of reservoirs, the
number of constraints are large because they deal with similar subsystems, repeated in time or location.
Approaches to these large mathematical programs have been aggregation, decomposition and partitioning
methods. Therefore, nonlinear programming will gain its practical importance in water resources systems
with the developments of computer technology and effctive algorithms for large-scale multi-objective systms
optimization (Cohon and Marks, 1975; Haimes, 1977).

A general nonlinear programming problem (of a reservoir system) can be stated as:

min f(x)

XeX

s.t. g(z)>0
in which z is an n-dimensional vector of decision variables, and f(z) and g(z) are a real-valued and m
vector-valued given functions, respectively. The contstraint set X is usually a subset of n-dimensional real
space, such as simple upper or lower bounds or nonnegativity conditions. If the objective function f(z)

and the constraints g(z) are additively separable, the following separable program will result:
TR Z i)
s.t. & gii(2) 20, i=1, -, m

This special program structure might arise from decomposition in time or space of a reservoir management
problem. The separable program becomes the linear programming with the additional assumption of

linearity in objectives f; (x;) and constraints g;; (x;). It becomes a dynamic programming if the constraint
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inequalities are replaced with the recurrence equations of the system dynamic and the appropriate boundary
conditions of the system states. Thus, both linear and dynamic programming techniques should be
considered as simplified cases of the general nonlinear programming with their associated merits and
drawbacks. The choice among these programming methods, ie.,, LP, DP or nenlinear programming,
depends on the characteristics of the reservoir system, on the availability of data, and on the objective and
constraints specified.

There are three mathematical functions associated with the general nonlinear programming formulation.
First, the Lagrangian associated with the constrained problem is defined as:

L(z,2)=f(z)— g ()
in which 4(>0) is an m-dimensional Lagrange multiplier. Then, a saddle point for the Lagrangian is
defined as (x,1) such that

LG ) <L(Z D220,

Lz, A)=L(x,)¥xeX.
This condition gives the sufficient condition for optimality but does not give the necessary condition, and
thus an optimal solution could exist without any saddle point.

A Kuhn-Tucker point (xeX, A>0) can also be defined as:

V<L (%,2) =0---stationarity,
g{(x) = 0---feasibility,
2g (%) =0---complementary slackness.
It need not be even a local minimum but becomes both necessary and sufficient for the optimum of the
convex differentiable program satisfying a constraint qualification.
Second, the dual function is defined by the equation
L3 :inxn L(x,2),
and the dual problem associated with the original (primal) problem requires the maximization of the
concave function(2) over a convex set A>0,
mex 20
The nonlinear duality theorem states that (x,1) is a primal dual optimal pair such that £(J) =f(x) if and
only if (x,2) is a saddle point of the Lagrangian L(z,4). Separable (convex) problems are ideally suited
to dual methods, because the required unconstrained minimization of L{x,2) decomposes into small
subproblems. Note that (x,4) is not a saddle point if Z (1) is not differentiable at A.
Last, the primal function (or optimal value function) associated with the perturbed problem is defined as;
a(Y)émxi‘r; f(x)
s.t.g(x)=y
The ¢(y) is a convex function with convex f(x) and concave g(x) on convex z. If ¢(y) is differentiable
3=0, then A is the gradient of ¢ (v) at y=0. Thus, Lagrange multiplier 2 measures sensitivitives of the
optimal value function and have interpretations as prices associated with constraint resources. The
mathematical properties of th these functions and the convergence theory of iterative algorithms are the
most important concepts of analysis in an optimization problem. The convergence theory is concerned with
the questions such as whether a given algorithm in some sense yields a solution to the original problem
and how fast the algorithm converges to a solution.

Computational methods in nonlinear programming can be divided into the wunconstrained and the
constrained formulations (Luenberger, 1973). Techniques available for solving the unconstrained problems
include the steepest descent (or ascent for maximization) methods, the conjugate direction methods, and the
quasi-Newton methods. Most of these techniques require some search techniques such as the Fibonacci

search or curve fitting, but they differ in the rule of successive movement directions based on different
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amounts of derivative information.

The Fletcher-Reeves method for implementing the conjugate gradient algorithm does not require the
evaluation of the Hessian matrix H (xz4) at the k** iteration but does require a line searcn. The algorithm
is based on the fact that the step size a: as computed by the pure conjugate gradient aléorithm minimizes
the objective function in the direction ds. The algorithm is:

Step 1) Given initial solution z,, compute the gradient

VS (xy) and set do=—Vf(zy)
Step 2) Choose a; to minimize f (zi+adi) and set
Tip=Tetedr, disr=— N f(Tryr) + Bids

7fT(x "z
e L -
Fletcher-Powell method is one of the most powerful quasi-Newton procedures. Central to the method is a
symmetric positive definite matrix H; which is updated at each iteration, and which supplies the current
direction of motion d: by multiplying the current gradient vector Y f (xs). The procedure starts with any
symmetric positive definite matrix H, and any point x,.

Step 1) Set di=—H:\ f(xx)

Step 2) Choose ax to minimize f(xi+aide) to obtain x.,,,

Pi=awd, and qe=f(xr1) =V f(x8)

PP HuqugTHY

Fkqu

Step 3) Hu=H, LLEN
ep ) ka1 P q‘THqu

There are also a numer of unconstrained optimization which do not even require derivatives such as the
pattern”search of Hooke and Jeeves, Rosenbrock’s method, and Powell’s method.

Techniques available for solving the constrained problems include primal method (especially for problem
with linear constraints), penalty and barrier methods (especially for problem with nonlinear constraints),
and dual methods (for convex and/or separable problems). The primal methods consist of feasible direction
method, gradient projection method, reduced gradient method, and their variations to handle nonlinear
constraints. They require a procedure to obtain an initial feasible solution. Penalty and barrier methods
such as the sequential unconstrained minimization technique (SUMT) convert constrained problems to
unconstrained problems, and usually need some modification for an accelerated convergence. Computational
methods for solving the dual includes the gradient algorithm and the cutting plane method.

Consider a reservoir system problem defined as

min f(z)

ISX<u

s.t. g(x)=b
in which z is a decision vector of release and storage. The equality constraints include the system of
continuity equations and the & vector includes reservoir inflows. The vector ! and u of the inequality
constraints represent lower and upper bounds on decision variables. For example, the lower bounds might.
be the dead storage for sedimentation plus the minimum downstream requirement for water quality. The
upper bounds might be the free board requirement for flood control and the downstream channel capacity
for erosion control. The objective function might be long-term water supply and hydropower purposes
combined with short-range operational goals or targets. The reservoir inflows are usually assumed to be
deterministic in most nonlinear programming approachs and thus it is desirable to include sensitivity
capability in any solution algorithm.

With this general nonlinear prdgramming formulation, the penalty and barrier methods could be one of

the choices. The inequality constraint can be dealt with using an interior point barrier function and

equality constraint can be dealt with using an exterior penality function. Then the augmented objective
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function becomes

vler, )= f@)4r S (-t Lt i)

P F— li—xj /
A general minimizing algorithm can be given as mixed interior-exterior SUMT:
Step 1) Make an engineering estimate x, of the solution
Step 2) Choose r,>0 and t,>> 0, and obtain an unconstrained minimum of x, of the augmented objective
furction
Step 3) Continue with £=2, ---by choosing r: <r:_; and
t2>> ta., and starting from xs.,,
finding an unconstrained minimum point x of V{(x; r,t)
Step 4) As re—0 and ti->+o0, if | jxi—xi_,|| and
| f{zxs) — f(xs-1) | are sufficiently small, terminate the process and take xi as the solution.
The most important issue from practical point of view is the question of how to solve the unconstrained
problem in step 2.
If nonlinear terms arising from evaporation losses are linearized, the nonlinear problem can be further

simplified with the linear constraint of continuity equations.

min f(z)

I<X<u

s.t Az=b
For this nonlinear programming with linear constraints, one of the primal methods or their modification
can be used. The Rosen’s gradient projection method is motivated by a desire to implement the feasible
direction algorithm while not requiring the solution of a linear program at each step. The basic idea is
that at feasible point x, (a feasible solution to the constraints can be found by application of the phase
I procedure of linear programming), one determines the active constraints A,Tz;=b, (A,Tzi<b,) and
projects the negative gradient onto the the subspace tangent to the surface determined by these constraints.
Assuming the lower and upper bounds have been already included into the linear constraints Ax=86, one
step of the algorithm with a given feasible point x: is as follows:

Step 1) If A, is vacuous, let P=1I; otherwise, let the

projection matrix P=I—A,T(A,AT)*A, and
de=—P AS (x3).
Step 2) If dix0, let ax be an optimal solution to the following line search problem:
min f(xe+ade)
s.t. 0<a < amax
where @max=max{a : ri-+ad; is feasible}.
Update the decomposition and return to step 1.
Step 3) If dr=0, stop if A, is vacuous; otherwise,
let f=—(A,A,T) AN f(ze).
If >0, stop; x: is a Kuhn-Tucker point.
Otherwise, delete the row from A, with the most
negative component of 8 and return to step 1.
Since the set of active constraints changes by at most one constraint at a time, it is possible to calculate
one required projection matrix from the previous one by an updating procedure.

Instead of assuming the linearity of equality constraints, both the objective function and constraints
might be separated into sums of funcitons of the N individual reservoirs. Then, the general nonlinear
programming becomes one of separable problems, probably with some coordinating variables (Haimes,
1977).
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N
min Y, fi(x:)
1<xZu i=1

hs
st 2 gilz) >0

1
This separable (convex) problem is ideally suited to dual methods, because the required unconstrained

minimization decomposes into small subproblems. The required dual function now is

Z(2) :lmin Zv [filzi) —Ag.(x]

HrZu i

which decomposes into the N separate minimization problems

min  fi(x:) —Ag(x:)

The solution of these subproblems can usually be accomplished relatively efficiently, since thev are of
smaller dimension than the original problem. If a further decomposition of decision variables in time is
performed on these subproblems, DP might be used for each time periods in each subproblems (Lasdon,
1970).

The dual objective function in this case can be written as

max £ (3) =max erli(n [f(x)—2g(2)]

Aze

N N
where f(x)=3 fi(x:) and g(x)= 32 gi(x:). The dual problem is equivalent to the f{following linear
i=1 i=1 .

program in the variables z and 2 for a given .

max 2
2:50

sit. z< fx) —Ag(z) ¥lsx<u
For this equivalent program, the cutting plane method can start with an initial feasible point .

Step 1) Solve the following master problem to obtain

(2, )

max z
20

st 2Z fx))—Ag(x;), j=0,1,, k—1
Step 2) Solve the following subproblem to obtain xs
min. fx) =g (x)
If 22=2(X%), then stop; A is an optimal dual solution.
Otherwise,i f 2> £ (4), then return to step 1.
Note that the cutting plane algorithm for maximizing the dual can be interpreted as a tangential
approximation technique. ‘

Nonlinear programming is an effective technique in reservoir operation, as for as reaching an optimal
solution. Basically, there were two method that have been used for reservoir system: the conjugate
gradient/gradient projection method extended to handle linear constraints with penalty terms for nonlinear
constraints, and the Lagrangian gradient procedure for convex programs. The few articles on the subject
confirm that the programs work, but they come up with no solution to the time and storage factors.
Overall, therefore, it would appear that nonlinear programming techniques, while effective, are not really
viable at the present time unless the separability condition is assumed.

Areas of interest on future research can be directed to the follow aspects of the problem:

o development in some accelerated procedures of existing methods for faster convergence,
oincorporation of streamflow sensitivity features within both primal and dual algorithms,

o extention of the reliability programming to the multifacility reservoir systems problem,
2175 o] A o] A F—
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odevelopment of effective algorithms for both sp-
atial and temporal decomposition without destro-
ying nonseparability,

o application and comparison of the cutting plane
and the tangential approximation with existing
applications, and

o incorporation of dynamic supply-demand relation-
ships with changes of price in the objective

function.



