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Computer Simulation of Branching Pattern in Magnolia denudata Desr.
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ABSTRACT

The observation of branching pattern on Megnolia denudata Desr. was performed from July 1982 to

September 1983 and then computer simulation was carried out.

Tree crown pattern depends on not only genetic factors but also environmental factors and the deter-

mination of branching pattern which characterized it appears to properly explain the relationships such

as branching pattern and allocation of materials through the analysis of influence between branches under

several assumptions.

Now that computer simulated pattern was considered asthe accumulation of two factors which controled

the growth, it was represented as the stimulated tree which differs in branching rate that described

allocation of material necessary for the growth of each branch. There was a tendency of allocation ratio

of nutrients, i.e. subbranch to main branch to decrease by the passage of year. Under assumption

that branch was branched when accumulated material reached 1,

it was possible to represent the allo-

cation of nutrients as residual nutnentx'Ti—F‘ in main branch, residual nutrlentx-i_'_—F— in subbranch,

A(iA,iC) +FiA~D in current twig.

Like this, the basic minute difference of the allocation of nutrients according to the branch resulted in

complicated patterns in the tree crown.

INTRODUCTION

The growth of plant depends on environmental
and genetic factors in a very complicated way. Hallé
and Tomlinson(1978) suggested a “tree” that a sys-
tem in which any two points are connected via
only one possible path way(i.e., the system, is not
a reticulum and lacks loops). In this very general
sense one may find trees in many discipline-in her-
aldry as a genealogical chart(a family tree), in

geomorphology as the tributaries of a stream sys-

tem, in cybernetics as a decision-making process,
each providing as example of simulated mathema-
tical tree. The mathematical concept of tree may
have useful analytical and predictive purposes and
is helpful in constructing computer programs by
which real botanical trees may be mimicked (Cohen.
1967; Legay, 1971; McMahon and Kronauer, 1976;
Fisher and Honda, 1977, 1979a, b; Fisher and Hibbs,
1982). Paltridge(1973) considered a tree to be an
assembly of leaves attached to the ground by the
number of limbs whose function is to provide sup-

port for the leaves and to provide access to the



moisture in soil. Oohata and Shinozaki(1979) consi-
dered a tree the assemblage of unit pipe systems
as composed simply of a set of a unit amount of
leaves and pipe of unit thickness of nonphotosyn-
thetic tissue. And Honda er al.(1982), suggested
that a botanical tree can be regarded conceptually
as a system of axes which develops by a process
of repeated branching or bifurcation. A complicated
tree can be described by a few parameters of bifur-
cation which determine the geometry of the bifur-
cation process. According to Fisher and Honda (19
79a,b) and Honda et al.(1981),

the frequency of branching is

in botanical trees
never the
Thus

same

at every terminal branch. the number
of terminal branches does not increase by a regular
the rate of increment normally

exponent, since

decreases. This decrease can be attributed to two
theoretical constraints on growth; the one is an en-
vironmental or exogenous factor, resulting in inter-
branch competition or interaction. The use of inhi-
bition can be justified as a result of shading effects
together with phisical damage where leaves and
particularly buds make mechanical contact. The
other is an intrinsic or endogenous factor.

In this study, we investigated both exogenous
and endogenous constraints by using a tree model
programmed by authers for computer simulation,
Examples of computer simulated patterns are illu-
strated by different allocation of material are
compared with branch tiers in Magnolia denudata

Desr.

MATERIALS AND METHODS

The observation on Magnolia denudata trees at
Ewha womans Univ. campus were performed from
July 1982 to September 1983. Branching angle of
small trees and lower branches of large trees were
measured directly by protractor and goniometer
and the number of terminal branches were counted
for discrete time N.

The computer programming and simulation were

done by the FORTRAN language and MV 8000

computer. Total number of terminated branches
after N discrete step of time is calculated, First, the
branches grown with the critical value of nutrient
allocation(F =1) is calculated for N, and the status
of bifurcated branches from the terminal with F=1
is stored in A(1,7). Second, the terminated bran-
ches with the nutrient F is calculated for N dis-
crete years, the bifurcated branches will grow with
of FXF. For the calculated of this branches, the
growing status is stored in A(2,7) which is origin-
ated from the branches with F.In the calculation
of branches with the rate of FxIF XUF, the status
variable A(3,i) will be used, A(K, i) corresponds
with the rate of F* originated from F *~V branches.
The total number of term inated branches NC is
counted by the collection of A(i,j) which has a

value of less than one.

RESULTS AND DISCUSSION

Branch interactions

As showed in Fig. 1,a mother branch of Magno-
lia denudata preduces two daughter ones by bran-
ching process. The respective bifurcation period
was defined discrete time(N). Branch tier ¢f young
iree was presented in Fig. 2. A. Thick line cf the
figure shows the main branch and thin line of that
shows the subbranch. Small figure in the right
side is an schematic diagram of mean angles. The
branching angles formed by the new units(M and
S, respectively) are usually unequal, and represen-
ted divergence angles are 34 between main branch
and mother branch and 39 between subbranch and
mother at average. The simulated tree in Fig. 2.
B is a schematic diagram of Fig. 2. A., which an-
gle, that is 73, represents between main branch and
subbranch. Fig. 2.A and Fig. 2.B suggest that
some bifurcations may be limited due to an interac-
tion between the branches. At each bifurcation two
kinds of branches are produced, a more vigorous one
(Unit M) and a less or equally vigorous one (Unit
S). When a particular terminal point of a branch

unit is close to end points of other branches, its



Fig. 1. Branching pattern in the tree crown of
Magnolia denudata

growth and bifurcation may be interfered with.

Different flow rate

In an actual tree every terminal branch does not
bifurcate, because the frequency of bifurcation is
different at each terminal branch unit. The mecha-
nism that determines these frequency, presumably,
is determined by the morphogenetic status of the
In our

meristem and its position in the complex.

model. the difference of bifurcation frequency is
attributed to a difference of nutrient allocation of
some hypothetical material. The material could be
an unidentified substance a determiner for the growth
and branching of units. The amount of the material
transported through a less vigorous branch unit S
in a certain time is represented f, the relative allo-
cation ratio. This is some fraction of the amount
(set at 1.0) transported through the branch unit M,
the more vigorous partner of the unit S. Usually f
is less than 1.0 because branch unit M is generally

more vigorous than a unit S. Initially, f is assumed

Fig. 2. Actual and model terminal branches. Fork
angle and sympodial unit sequence indic
ated. A; actual branch with various fork
angles. B; Model of upperside of same
branch (A) using wunequal fork angles as
indicated in diagrams.

to be constant throughout the branch corhplex; its
variation with the complex will be considered later
in the present report. The material accumualtes at
the end point of f terminal branch. The critical

amount 1.0 of the material is assumed to be nece-



Fig. 3. Diagrams of the branching model with
different allocation ratios In example, f==1
/2. During the discrete time N=:1, the
amount 1.0 and 1/2 of material required
for branching accumulates at the end points
of terminal branch unit M(thick line) and
S(thin line), respectively.

ssary to permit subsequent bifurcation.
when f=1/2 is shown in Fig. 3.

There is a pair of branch units at N=1. The ma-

An example

terial accumulates at both end points until N=2.
At N=2, unit M has accumulated the amount 1.0
and bifurcates, whereas unit S has only the amount
1/2 and

bifurcate during two discrete steps or units of time.

remains as a single unit. Unit S does not

At N=3, unit S has accumulated the amount 1.0
(1/2-+1/2) and bifurcates.

Fig. 4, is an example of f=1/3, At N=2, unit
M has accumulated the a‘mount 1.0 and bifurcate,
whereas unit S has only the amount 1/3 and re-
mains as a single unit. Unit S does not bifurcate
during three discrete steps or units of time.

Fig. 5. is an example of f=2/3. At N=2, unit
S has the amount 2/3 and remains as a single unit.
At N=3, unit S has accumulated the amount 4/3
(2/3+2/3) and bifurcates 3/3 and reserves 1/3.
Reserved 1/3 of
ratio, 1/14-2/3 to 2/3/1+42/3.

can devide the reserves at every terminal buds.

the amount is allocated in the

In this manner we
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Fig. 4. Diagrams of the branching model with
different allocation ratios In example, f=
1/3.  During the discrete time N=1, the
amount 1.0 and 1/3 of material required
for branching accumulates at the end points
of terminal branch unit M(thick line) and
S(thin line), respectively.(Honda, et al.,
1981).
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Fig. 5. Diagrams of the branching model with di-
fferent allocating ratios when f=-2/3.



SUBROUTINE TREE(N, F, NC)
SUBROUTINE  TREE (NF, NC)

DO 99 i= 115 1
Do 99 j-J,zoooJ
99 CONTINUE

i

LA( 1A, iC= (A(AS,iB-)x

[K= k]
<K >N2> YES@

IAICE=AGA,ICH FYHA-1)

A

NY(A, I CFK
T=A(iA,iC)

1
AliA,ICHT = et

Fig. 6. Flow chart of the model.
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Programming for computer simulation

The flow rate of some substances from main
branch to subbranch is denoted by Fig. 3,4,5. The
growing energy A will be distributed to main branch
by (1/14-F)X A and to its subbranch by (¥/1+4F)A.
N denoted the discrete time and F is the allocating
ratio of a subbranch to its main branch. It is ass-
umed that stored energy to each branch is repres-
ented by A(Z,j). Terminated branch which is un-
der growing have the A’s value such that 0=CA<1.
When the value of A exceeds 1, this branch will
bifurcate a subbranch. The computer program with
FORTRAN language is attached to Appendix A.
The allocating ratio F/1, 0.998, 0.98, 0.9, 0.75, 0.
667, 0.5, 0.4, 0.333, 0.25 and 0 is selected. The
total number of terminated branches NC are calcu-
lated and printed for the discrete time N=1~N=
12.

Subroutine tree(N, F, NC) is programmed to co-
unt all the terminated branches of a tree which
represented in Fig. 6. N and F are inputs and NC
is an output. The output NC represents all the ter-
minated branches after N discrete steps of time. In-
itial starting value of A(i, j) is given by 2; A(Z, j)

=2, But this is only initiated state where no gro-

Table 1. Number of

wing energy is stored and we know A(, ) never
reach or exceed the value of 2. The total number
of terminated branch NC is found from line num-
ber 4000, the terminated branch

0<{A(i, j)<1 are counted,

where all with

Results of different allocation ratios
Number of terminal branches for
time N are listed in Table 1.
7. When f==1.0, that is, a branch unit S has the

same flow rate as a branch unit M, all end points

the discrete

and plotted in Fig.

of terminal branches bifurcate. The branching pat-
tern is very complicated and the number of terminal
branches increases exponentially.

that

As the value of

f decreases, is, unit S transports material
more slowly than unit M, the overlap of branches
decreases. We have assumed that the f/ value is
the same in every pair of branch units. We can now
examine the case of different f' values in certain
locations of a branch complex. In some branch com-
plexes a main axis, which is thick and zigzag, is
very distinct and can easily be distinguished from
other parts(side branches) of the branch complex.
In the real tree, allocating ratios of unit on unit M

were gradually decreased. It representes the differ-

terminal branches in simulations of branching patterns

F/N 12 7 8 9 10 12
1.000 2 4 8 16 32 64 128 256 512 1024% 2048%  4096*
998 2 3 5 9 17 33 65 129 235 368 624% 1136%
980 2 3 5 9 17 32 50 82 146 266 431 704%
. 900 2 3 5 9 14 22 37 57 88 134k 204% 303%
. 750 2 3 B 8 12 18 2% 37 52 ToX 99% 134%
. 667 2 3 5 7 11 15 21 29 39 52 68* 89*
500 2 3 5 7 10 13 18 23 30 37 47 57

. 400 2 3 4 6 8 10 13 16 20 25 30 36

.333 2 3 4 6 8 10 13 16 19 23 27 31

250 2 3 4 5 7 9 11 13 16 19 22 25

. 600 2 3 4 5 6 7 8 9 10 11 12 13

F : Various allocating ratio
N : Discrete time
* : Calculated by the authors (The other

— 6

was cited from Honda et al.(1981))
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Fig. 7. The number of terminal branches plotted
on a logarithmic scale against discrete time
N. Respective f values are indicated.
W :actual number of terminal branches
observed in Magnolia denudata

ence of allocation of stored reserves to shoot exten-
tion. In Fig. 7, observed vaiue shows that the allo-
.cation ratio is gradually decreased approaching to
the value of F=0.667.
Feedback mechanisms in

terms of nutrient and

growth substance supply could be the actual regu-
latory mechanism. The model assumes that there
is a hypothetical material which flows through
to a-critical thres-
Such

material might be carbonates, a regulating subst-

branches and accumulates up

hold above which bifurcation takes place.

ance like a mineral or hormone, water which could
affect photosynthesis and meristem activity, or a
combination of these,

Some supportive data is presented‘by Zimmer-
mann(1978) who showed that difference in the flow
rates of dilute KCL solution through the xylem

exist within one tree he interprets this as the re-

sult of hydraulic constrictions between the trunk
and lateral branches. These physiological constric-
tions are related to anatomical difference and result
in differing, and presumably regulating, allocating
ratios within the entire system. And intrinsic allo-
cation ratio is related to the weight of leaves atta-
ched to the distal branches and has been described
by the “Pipe model theory”(Shinozaki et al., 1964).
Computer simulation of branching patterns above
decribed is ideal for studies of several large bran-
ches or for entire trees less than 20 years old. But
further study should be done in the older trees
because of many variations of branching pattern
according to the environmental differences.
Appendix A(Programed by Park and Choi)
SUBROUTINE TREE(N, F, NC)
DIMENSION A(i5,2000), NY(15,2000)
DO 99 I=1,15
DO 99 J=1, 2000
A, H=2
99 CONTINUE
DO 100 I=1,N
A, D=1
NY (1, D=1
100 CONTINUE
L=N+1
A(l,L)=0
JA=2
1B=0
IC=0
900 TA=IA -1
700 IB=1B+1
1000 IF(A(IA,1IB).EQ.2.) GOTO 3000
IF(A(IA,IB).LT.1.) GOTO 700
TAS=IA
TA=TA+1
K=NY(IAS, IB)
IC=IC-1
A(TA,IC) = (A(IAS,IB) ~ 1. )xF/(1. +F)
1100 K=K-+1
IF(K.GT.N) GOTO 900
A(JAIC) =AJA,IC)+Fx*(TA-1)
NY(IA,IC) =K



T=A(IA,IC)
IF(T.LT.1.) GOTO 1100
IC=IC+1
A(IA,IC) = (T —1.)*1. /(1. ~F
GOTO 1100
3000 IF(IB.EQ.1) GOTO 4000
IA=IA+1
IB=0
IC=0
GOTO 700
4000 NC=0
DO 300 IL=1,15
DO 200 IM=1, 2000
IF(A(IL,IM), GE.2.) GOTO 10
IF(A(IL,IM), GE.1.) GOTO 200
200 CONTINUE
10 IF(IM.EQ.1) GOTO 20
300 CONTINUE
20 RETURN
END
DIMENSION FL(11),
DATA FL/1, .998, .9,
.25,0./
PRINT 20
20 FORMAT(///////50X, “N”,
//18X, “F*, 7X, “1”, 6X, “2”, 6X, “3”, 6X,
“gr X, “6”, 6X, “T”, 6X, “§”, 6X, “9”,
5X, “10”, 5X,“11”,5X,“127//10X, 100(“-")//)
DO 1 L=1,11
F=FL(L)
DO 2 IL=1,12
CALL TREE(IL, F, NC)
M(IL) =NC
2 CONTINUE
PRINT 30,F, (M(1),1-1,12)
30 FORMAT(7X, F7.4, 1X, 1217//)
1 CONTINUE
STOP
END

M(12)

.75, .667, .5, -4, .333,

/710X, 100(%-"),

i -2
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