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Nomenelature

a : Cross sectional area of sample (m?)

c : Specific heat at constant pressure (J/kg-K)

G : Green’s function

he : Heat transfer coefficient combined by con-
vection and radiation (W/m?*.K)

k. : Radiation heat transfer coefficient as defi-
ned k.=40e7T.* (W/m?K)

hy : Convection heat transfer coefficient (W/
m?-K) N

H : Volumetric heat capacity (J/m3.K)

k : Thermal conductivity (W/m-K)

{ : Thickness of homogeneous sample(m)

Il : Thickness of i-th layer (m)

K1 K% :Value defined in equation (13)

L : Distance from refergnce point (m)
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N.
q(z,t) :

Q

: Norm

Instantaneous volumetric heat source gene-
rated by the heat pulse(W/m?)

: Heat energy supplied per unit area at the

front surface of the sample from the heat

source (J/m?)

: Time (sec)
: The time required for the back surface to

reach hal fof the maximum temperature(sec)

: Dummy variable for time
: Peak time for exponential type heat pulse

produced by a Xenon flash lamp (sec)

: Temperature in the layer at location z and

time ¢ (K)

: Temperature of surrounding fluid (K)
: Axial coordinate (m)

: Dummy variable for axial coordinate
: Thermal diffusivity (m?/sec)

: Fraction between zero and one for the tri-

angular heat pulse produced by a laser

: Stefan-Boltzmann constant(5, 669 % 10°*W/
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m?.K*)
¢ :Surface emissivity
2. : Eigenvalue
¢ Eigenfunction
p : Density (kg/m?)
0 :Kronecker delta function
¢(t) : Normalized heat pulse
Subscripts
i :Value of i-th layer (i=1,2,3)
max : Value at maximum time

1. Introduction

With the development of the industries, the use
of layered composities, especially surface treated or
coated materials on the substrates, has been rapidly
increased in a number of applications such as the-
rmal barriers, emissivity control, electrical insulat-
ion, wear and tear, and erosion or corrosion resis-
tance protection. Thus the layered composites have
become one of the most important engineering mat-
erials in practical use. It is therefore a very inter-
esting and important problem to predict and measure
the thermophysical properties of the layered comp-
osites.

Larson and Koyama?, Gilchrist?, Schriempf®
Bulmer and Taylor®, and Lee® measured the the-
rmal diffusivity of the layered composites by the
flash method for measuring thermal diffusivity of
homogeneous materials. But they neglected the heat
loss from the front and rear surfaces of the sample.
Lee® measured the thermal diffusivity by the flash
method, using the vessel of the three-layer compo-
sites with distilled water. From the measured results
of the thermal diffusivity of distilled water, he
demonstrated that the flash method can be also
applied to measure the thermal diffusivity of fluids.
But his results can be applied only in the limited
ranges because of the neglected heat loss.

In the present work, in order to extend the appli-
cation of the flash method to the fluids as well as
the solids, an arbitrary heat pulse is applied to the
front surfaces of the sample made by three-layer
composites, and the heat diffusion equation is anal-
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yzed by Green’s function with assumption of the
boundary conditions which closely corresponds with
the actual experimental conditions. Special emphasis
is on the heat loss from the front and rear surfaces

of the sample.

2. Formulation of the Problem

In the flash method of measuring thermal diffus-
ivity, a small sample of cylindrical shape is subj-
ected to a short pulse of radiant energy on the front
face and the resulting temperature-vs-time of the
back surface is recorded. From this history, thermal
diffusivity of the sample is obtained by digital com-
puter data reduction procedure with analytical sol-
ution.

In order to apply the flash method for measuring
the thermal diffusivities of fluids as well as those
of oxidized or nitrided films, the heat diffusion equ-
ation must be established for the three-layer comp-
osites shown in Fig. 1 and solved with the closely
corresponding assumption as the measuring condit-
ions. Therefore, in the present analysis, the follo-
wing assumptions are made to solve the heat diffu-
sion equation of the flash method.

(1) Heat flow is one dimensional.

(2) Each layer is homogeneous.

(3) There is no interfacial thermal contact resis-

tance.

(4) Instantaneous heat pulse acted on the front
surface of the sample is a function of the
time and is uniformly absorbed on the front
surface.

(5) All of the thermophysical properties are con-
stant in measuring temperature range but the
thermophysical properties of each layer have

Front Face

Layer1 | Layer2 | Layer3 Back Face
a o a
Heat Pulse —«df Cy c, . ~ Temperature Detector
” s o
‘k" ks ks
[} L, L, li, z

Fig. 1 Diagram of three-layer sample
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different values.

(6) There is heat loss from the front and rear

surfaces of the sample.

In the above condition (6), the temperature diff-
erence between the sample and the surrounding fluid
So the usual fourth-power
law for radiation heat loss may be approximated by
the linear formula as follows;

oe(T* =T =h,(T-T.), where h.=40eT?

Therefore the heat loss on the surface of the

sample by the combined heat transfer of convection

is assumed to be small.

and radiation is
he(T—T.)+h(T—T.)=h(T~T,), where
he=hs4-h, 6}
Under the above assumptions, the heat diffusion
equation for each layer is mathematically described
in the following way:
0%,

241 222 +-5= k q( t)— in 0<z<<Ly,t>0 (2)
2

a8~ 2 iy L,<a<Ls, >0 @)
2

as LB in 1,<z<Ly, 150 @

The g(z,t) in equations (2) is the heat pulse
radiated on the front surface of the sample. In order
to consider the finite-pulse-time effect, the g(z,t)
can be described in the form

q(z, H)=Q35(2)¢ ()

The boundary conditions and initial conditions are

0y

k3 aalf: + hc;u3=0

at z=L, (5£)

The initial conditions are

wy=u,=u;=0 for =0 (6)
where
w=T:—T., i=1,2,3 @)

3. Analysis

In order to analyze heat diffusion equation by
Green's function, the following eigenvalue problems

must be solved.

d%in ,
dfz ¢1,.—0 i=1,2,3 ®
kr%:—-f-hc,gbp.:o at z=(0 (93.)
Prin=2n at z=1L,; (9b)
ddin __, ddon _
k]_ dz ——kZT at Z——Ll (QC)
¢zn=¢3n at Z:Lz (gd)
k, d¢2" =k, dg’;" at z=L, (%)
ks d¢’3" A9 | podn=0  at z=Ls of)

The general solution of equation(8) is taken as

. An An
¢v,-n(z):A,»,.sm( Ja z)—{—B;,.cos( A z),
i=1,2,3 (10)
In order to determine six coefficients Ain, Bin
with =1,2,3, the eigenfunctions ¢:. (2) given by

—k 0z Fha=0 at 2=0 (52) equation(10) with Bj.=1 without loss of generality
Uy =1u, at z=1, (5b) are inserted into the equation(9)
ky aa”z‘ =k, aauzz - at 2=, - (5¢) The resulting system of equations can be repre-
followi trix notation
—_— at z=L, . (50 sented as a following matrix it
3u ou Lal(x]=[0] an
b=k, at z=L, (5)  where .
1 —B,/7- 0 0 0 0 Ajn
siny, COST» —sin( Z 77,.) —cos(—%m) 0 0 1
K, cosy. —K,siny. ~cos< é‘ 7]n> sin( i: p,.) 0 0 A,
2
(12a), 12b
(a)= . L L, \ |tz ()
0 0 Sinya. COSTa —sm( I a,.) —cos( " a,.) B
. L . (L
0 0 K, co8pn — Ko psing. —cos< Lz ) sm( L: on) Aan
B; . .
0 0o - 0 0 €osg.+ a: Sing. —sine, Bs
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B,= %, B;= 2 Kl/z— A *;1—
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Kz/3~—— / 2
3

The first five equations of equation(1]) can be
used to determine the coefficients. The coefficients

are
An=B;/7x (142)
Az,.:-(%mnr,.—l—cosr,.)sin(T— )—i—Km
(—%-cosrn—sinr,)cos< > (14b)
anz(%-sinrn-l—cosr, cos( ) —K
( ﬁ‘ cosr,.—smr..)sm( ) (140)
As,.:( 7]:?: +siny.4cosya ){sm( )
(éz_f_l- pn)—Kz,acos( é” )sin( LZ“L‘ 7/,.)}

Gn
+K1/z<% +COSYn —sinr..) {sm

< . O'n)Sln
(l‘%)nn—ﬂfmcos(—lﬁ_g")c%( LzL_le 77">}

(14d)

Ba,,=<—fni- -sinr,.+cosr,.){cos( éz »)COS

=)
+K1,z< B, .cos)’n—sinr,,>{(;05( fz 0'n>sin
(LszLl )-Kz,asin(—é’—?,;,‘)cog’( LzL—zL, )

(14e)
Equation(11) has a non-trivial solution when the

determinant of [a] is equal to zero. After setting
this determinant equal to zero, an expanded form

of this determinant is then given as

( f‘ +cosrn)[{ﬁ cos( L—sj_—é—a,.)—sin
( L:"l:l‘z a,)}cos( Lzzzl" 77,.>
—Km{ sm( L— L2 ,)+cos(%:ﬁ—a,)}

sin( 27 E.))
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+Kl,2< f:‘ cosr,.—sinr,,)[{ fj cos( LSZSLZ m)
—sin< L"L:L’ a,.)}sin( Lzzzl“ m)
+K2,3{£sm< L3L3 z ,l)—l—cos(—L%éz—a,.)}

cos< Ly L‘ m)]:o

for determmmg the eigenvalue Z..

(15)

The corresponding Green’s function Gi(z,¢|z', ")
of the problem® is

Gila, 112,1)=F, Jo b b () gun(2),

i=1,2,3 (16)
‘where norm Nn is given as
N.= ¢1,2(z)dz+ z S:gj;z,,z(z)dz—i—
75§L2¢3,2<z>dz an
here
_ 31
§, o @da= (B 14 sLsingar
Bl B,
( e )+2—— sin®ys } (18a)
La 2 1 2 2 Lz
fotwi@dz=L L~ L)(An+ B g
. . L
2__ 2 — 1
(Auni—Ba) [sin(27.)—sin2 7 7))
L 4., Lo\
+ 7 Agn Bz,.{cos( L. 77..) cos(277,.)}(18b)
Sosport@dz = (Lo— L) (Ass'+ Bty 2
iz 3n i 2 3 2 3n 3n T

(Aszn2—B3a?) {sin(Za,.) —sin<2%: m)}

Ls éz ,.)—cos(2an>} (18¢)

+~— Ag,.Bs..{cos(Z
Therefore the temperature distribution of each layer

described by Green's function is
u:(z, t):S‘:,:‘J S::oG.-(z, tiz', l’):—l‘q(z’, thdz'dt’
i=1,2,3 19
By inserting equation (16) and ¢(2’,#')=Q48(2") ¢
(t) into equation(19), the temperature distribution
of each layer is

(2, H=QF; iy {psin( 2=

7n a,

(e )ftmscoe

z> +Cos

(20a)
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@ . An
#:(2,1) ZQ"; ‘1\1/,.‘{1‘12»'51‘11( s z)—l—Bgn-cos

( jz z)}g;e“‘i“"”qS(t’)dt’ (20b)
s(2,£) = Q5 [ Asr-sin( j:z 2)+Bsarcos
( j&: z)}gie":““”g{:(t’)dt' (200)

By letting z=L; in equation (20c), the rear surface

temperature of the sample is

us(Ly, t) =Q§]l 7\1[—,. {Asn‘sino',.JrBa, . cosa,.}

[ernemgunar (2D
]

When there is no heat loss, the maximum temp-
erature rise of the sample, #max, is obtained by div-
iding the intergration of heat pulse by the volum-
etric heat capacity (gi¢i/ia+ peolia+ peslsa)

Then

i
aQ(' gyt
—_
3
> H;
i=l

By taking the dimensionless form of equation(21)

, where Hi=apicid; (22)

Umax=

with equation(22) the virtual dimensionless tempe-
rature W is

W(Ly, =Ll
=L+ H B B -4,
= (Hy+ Hok H) 3 3~ { Asnesing. o+

B, cosa,.}S(l,., £) 23)

where

S, )= Jerien patnar (2
K (‘snar

By dividing equation(23) with the maximum vir-
W{(L;, tnax), actual

tual dimensionless temperature
dimensionless temperature V is

__ WL,
V=i (25)

where fma.x is the required time to reach maximum
temperature at z=L; when there is heat loss.

In order to include the finite pulse time effect,
the function S(4.,4) can be represented by three
different ways depending on the heat pulse common

ly used in flash method.

(a) For an instantaneous heat pulse used by
Parker, et al”

gH=d® (262)

S(An, 1) =4t (26b)

(b) For the triangular heat pulse of a laser disc-
ussed by Taylor®

I%(#) 0<t <pe
$)= _E_(%) Br<t<z (272)
0 t>¢
S(Aﬂi t)z_/zTﬁzz_e(%‘:n_t‘B—z,)'[ﬁ(el’z'f—l){»l_eliﬁr]
(28b)

where 8 is a fraction between zero to one and 7 is
the pulse time,

(c) For an exponential type heat pulse function
represented by Larson and Koyama®

#(D=—re
4

sy e
[[,—e""(t-{-t,)]t,(l,.z—%)z

In the present analysis when p,=p,=pg;=p, €;=Cs

=c3=¢, ay=ar=as=a, Liy=L,=L;=I] and no heat
loss from the sample surface, actual dimensionless

temperature of back surface is

V=1425 (=1)"S(2n, &) (30a)
where
a=DEYE (300

For an instantaneous heat pulse represented by a
Kronecker delta function equation(30a) becomes

V=1+25(~Drexp( 252 ) (31

This is equivalent to the well-known equation for
the flash method by Parker, et al”. From equation
(31), the thermal diffusivity can be evaluated dire-
ctly by the following well-publicized formula
.. 0.1392

a
tl/Z

(32)
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4. Discussion

In the present work, the mathematical analysis of
layered composites without interfacial thermal con-
tact resistance allows the measurement of the unk-
nown one thermophysical properties for one of the
composite layers if those for other layers are known.
Three-layer composites are emphasized in the anal-
ysis because two-layer composite or one-layer hom-
ogeneous materials can be treated as a special case
of the three-layer composites by letting the therm-
ophysical property values of contiguity layers be
equal. From this analysis the unknown property
can be determined more accurately than before
because of the consideration of the finite pulse time
effects and of the heat loss effects from the three-
layer sample surfaces in the analysis. The layered
sample can be made of three-layer, two-layer or
one-layer with solid materials. The application of
the three-layer composite analysis can be adapted
to the fluid sample, such as liquid or gas, contained
in a cell composed of two thin plates consisted of
the high heat conducting solid materials.

The required unknown thermal property in the
flash method may be extended from the thermal
diffusivity, conductivity, thermal capacity to the
total emissivity by using this method. The total
emissivity may be determined by the establishment
of experimental set up in the flash diffusivity app-
aratus. If the sample is placed in high vacuum
system, the emissivity may be calculated from this
analysis at the given temperature and roughness of
the sample by using the half time and the maximum
time measured in the'experiment when the remained
properties of each layer are known. Therefore the
emissivity may be determined as a function of
temperature and the roughness of the sample

surfaces.
5. Conclusion

For the extension of application in the flash met-

hod. the heat diffusion equation, with the radiation

and convection heat transfer from the front and
rear surfaces of three-layer composites and with an
arbitrary heat pulse applied over the front face of
them, is mathematically analyzed with an approp-

riate Green’s function.
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