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REMARKS ON FINITE FIELDS

SHIN WoN KANG

It is the purpose of this paper to give some remarks on finite fields. We shall show
that the little theorem of Fermat, Euler’s criterion for quadratic residue mod p, and
other few theorems in the number theory can be derived from the theorems in theory
of finite field K=GF(p), where p is a prime. The forms of some irreducible ployno-
mials over K=GF(p) will be given explicitly.

For every prime p and positive integer =, there is exactly one finite field F=GF
(") (up to isomorphism) of order p" The Frobenius mapping ¢ : F—F such that
¢(z) =2* is a K~automorphism of F and the Galois group Aut;F is cyclic of degree #,

generated by ¢ ([3], [5]).

LeMMA 1. Let g be a prime. Then there are exactly (p?—p)/q distinct monic irredu-
cible polynomials of degree q over K=GF(p).

Proof. Let F=GF(p%). Since [F: K]==¢, the only non-trivial proper subfield of F
is K=GF(p). Each of |F—-K|=(p?—p) elements of F satisfies some monic irreducible
polynomial of degree g over K, but the ¢ elements of them are conjugate each other
and they are the roots of same monic irreducible polynomial of degree g over K.

COROLLARY. If p, q are primes, then pi-p=0(mod g). Moreover, if (p,q)=1 then
p77'1=1(mod g).

LEMMA 2. Let q be a prime and n an arbitrary positive integer. Then there are
exactly (pt —peD) /q" distinct monic irreducible polynomials of degree q" over K=
GF(p).

Proof. Let E=GF(p"). Then [E:K]=q¢" and E contains the finite field E;=
GF(p1) as the largest subfield, which contains the subfields of E of order ¢, g% -+ g" 2.
Each of |E-E;|=(p® —p*1) elements of E satisfies some monic irreducible polynomial
of degree ¢* over K, but the q" elements of them are conjugate each other, so the
Lemma is true.

COROLLARY. If p,q are primes and n is arbitrary positive integer, then pa™ —pa" !
=0 (mod ¢").
Moreover, if (p,q)=1 then pi*—g" =1 (mod ¢").

THEOREM 1. Let a be an arbitrary integer and a prime not dividing a, Then
g
ar"—p* 1=1 (mod p*) for every positive integer n.

Proof. Suppose that a can be factored into the product of primes. Without loss of
generality, we may assume a=gqr, wherc ¢,r are primes. By Lemma 2, we have
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¢"=¢r"t (mod p) and =17t (mod %), so we have go. rt=amz=gnl 71 (mod
") or """ 1=1 (mod M.

DEFINITION. Let f be any monic irreducible polynomial ¢f degree n over K=CF(p)
and
Ky=K[z]/(f)={a" +.....+a, it +a,|a;EF, f)y=o}.
Then ¢ is called the generating element of K.
If acKy and |aj=p"—1, then a is said primitive element of K.
If the generating element ¢ of K, is primitive, then f is called a primitive polynomial
of degree n over XK.

LEMMA 3. If & denotes Euler ¢~function, then there are o(p"—1)/n primitive
polynomials of degree n over K.

Proof. See [1].

If f, g are monic irreducible polynomials of degree n «ver K, then there are n
isomorphisms from K onto K,. Let @ be an arbitrary element of K, and ¢i(a),
i=1,2, ...... , # be mutually different in K Then there exists uniquely determined
monic irreducible polynomial £ of degree # over K which is satisfied by ¢ (a), i=1,
o #. If s is the generating element of K;, then « and s have same order and a1~ s
induces an K-isomorphism ¢ from Ky onto Ky such that ¢(a)=s. ([4]).

THEOREM 2. Suppose that an odd prime p can be written in the form p=mn-+1,
where m, n are positive integers, and a is a primitive root of p. Then 2™ —a is irreducible
over K=GF(p), and so is 2™~ a.

Proof. If ¢ satisfies f=z"—a, then t"=a and th=gmt, i gt (mod p) for i=1,
2,...n. Since a is a primitive toot of P lal=p—1l=mnin K, so we have "
(mod p) and s 460/ (mod p) if i+ 4, for all 14, j<n—1 and ¢, 7, ..., tpD
roots of fe=at g,

COROLLAY. Let a be a primitive root of an odd prime p. Then a*a is irreducible
over K, and so is xt"1—g,

Proof. Every odd prime p can be written in the form p=2k—1 or p=1-(p—1)+1.

LEMMA 4. Let p be an odd prime. There are (p—1)/2 movic irreducible polynomials
of degree 2 over K=GF(p) of the form z° - a.

Proof. Let r be a primitive root of p=:9/11. Then by the corollary of theorem 2,
S=af—r is irreducible over K. The generating element ¢ of K, is conjugate to ¢ (t)
=thert in Ky and we must have #4422y (mod p). So r*=~1 (mod p) and any
clement of K, of the form at, aGA, s conjugate to ¢(at)=art t—ar (mod p) in
Ky Now at and --af satisfy the uniquely determined monic irreducible polynemial A
of degree 2 over K and if s is the generating element of K,, then af1— s induces a
K-isomorphism ¢¢ such that ¢ (as) =3, Therefore, s*=¢(at))=a* and s is the
generating element of A=22—a%. There are (p~1) elements of the form at,
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a<K, in K;, and the two elements of them are conjugate each other and determine one
monic irreducible polynomial over K of the form 22—8, & K. On the other hand, if
gt+neK s and p(&t+7) satisfies a monic irreducible polynomial of degree 2 over K of

the form z2—a, then =0.

COROLLARY. For an odd prime p, if a is a primitive root of p, then (—Z—)——-l,

where (%) is the Legendre symbol.

Proof. If a is a primitive root of p, then by Lemma 4, f=2?—a is irreducible over
K=GF(p). So there exist no element €K such that a®*=a (mod p) and a is a non-

quadratic residue mod p and (%) =—1.

p-1

COROLLARY. If p is an odd prime, then <-;—) =a? (mod p),

Proof. If (—;—)z——l, then 22—a is irreducible over K, so by Lemma 4, for any

primitive root 7 of p there exist an element a€K such that a=a*r (mod p), then
= b1 e
a?=(a%) T =r ? =—1 (mod p).
JU ot | -1
Conversely, if a2 =—1 (mod p), then for a root ¢ of f==a2%—a, tP=a* t=—¢(mod

p) and ¢#tp (mod p), so f is irreducible over K, and (%):——1. On the other hand,

. a . . . .
if (——):1 then 22—a is reducible over K, so there exist an element a« of K such

that @’=a (mod p), so a!’;'lzaf’“l.—“;"l (mod p). Conversely, if ap‘%lzl (mod p) then f=

22 —a is reducible over K and (%) =1.

Let us consider an irreducible polynomial f=x?—xz—a over K=GF(p), p any prime.
The generating element ¢ of K, satisfies ?=¢+a. Straight forward calculation shows
that *=S, 1t+ T,;, where S;=1, Ti=a and S,=S,.+ Ty, Tr=aS,.; (r=2,3,...,n)

or more explicitly

we have §,= ((r)) + (r11>a+...+<z‘) a™ for r=2m,

S,~<r0)+(r11>a++( L1> a™ for r=2m+1
where <n>-—— !
r

DrriniTion. For every positive integer
n ‘n— .
( )+( 1>x+...+ (Z)x’” if n=2m,

0 1
(el st

is called Shinwon polynomial of order n and is denoted by S,(x).



84 Shin Won Kang

LEMMA 5. If f=a® —x—a is irreducible over K=GF(p), p is a prime, then for
any positive integer n,

Su(a) =8y1p0 (@) (mod p)

Proof. Let f=a®~x-a be irreducible over K=GF(p). The generating clement ¢
of (K, satisfies tr?-1==1, pro=prist=l

LEMMA 6. For every prime p, S,(x) splits over K=GF(p:.

Proof. Sy{x)=1-+2=0 (mod 2} has a solution x=1 in K=GF(2). For every odd

+&e Kf must satisfy the
irreducible polynomial g=x%—2bx+8>—r. We may choose £=271 in K, so the genera-
ting element s of K, satisfies g==2%—z-a, where

generating element ¢ of K, satisfies #*==r and an element a==1

in theory of equations show that s-+sf==[1- Spila) i s+aS, . (a)=1imod p).
Hence 148,21 (@=0 (mod p),
aSyr»  (a)==1 (mod p)
So Sy(a)=S,_,(a) +aS,-2(@)==0 (mod p). I »iiry in K, chen ay=m —b#r, b =a,
(mod p) and the Lemma is evident.

COROLLARY. For every odd prime p and positive integer n, the congruence Sy(pipy-1 ()
=0 (mod p) has (p—-1)/2 solusions in GF{p).

Proof. In Lemma 6, we have (p—1)/2 elements a of K= GF(p) such that s**l= -4
{mod p), so &V (—g)" (mod p).

DeriNition. For every positive integer # the polynemial 22— 2% — g over K=GF(p)
yp g poiy Js
P is a prime, is called n-step polynomial of 2?—zr—a over K. If fis any monic
irreducible polynomicl of degree 7 over K:=GF(p), and ¢ is the generating element of
Ky, then the order of ¢ is called the order of f and is dencted by | AI. The smallest
J: . 3
positive integer 7 such that #=a, for some ae K, is called Shinwon number of f and
is denoted by S(f).

Lemma 7. S(f) divides |f).

Proof. It follows from the above definition.

LEMMA 8 Let f=a—x—a be irreducible over K=GF(p), p be a prime. 1f s=S
(f), then S,(a)=0 (mod p) if and only if n=rs—1] for some positive integer r.

Proof. Let ¢ be a generating element of Ky, then #==a (inod p) for some a= K.
If Sy (23720 (mod p,) then 1=[S,(a) lt+aS,1(a)=aS,. (&) eK(mod p), so s|
(n41), and there exists a positive integer r such that n+1=rs. Conversely, if
n=rs =1, then "z (@) =[S, () Jt+aS, 1 (a) fmod p), so Sp(a)=0 (mod p).
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COROLLARY. Let f=a’—x—a be irreducible over K=GF(p). Then S,; .1 (a)=0
(mod p) and aS,s,3(a)=1 (mod p).

THEOREM 3. Let f=2?—zx—a be an irreducible polynomial over K=GF(p), p a prime.
If n-|fl1(p*=1) and n-|f]|(p'—1), i=1,2,..., 2n—1 then the n-step polynomial of
f is irreducible over K.

Proof. Let t satisfy the polynomial g=1—1"~a, then t*"=t"+g and t"=[S,_1(a)]
t"+aS, (@), so t"'"'=[S, (@] "+aS s 2@=1 (mod p) by the corollary of
Lemma 8.

If »[f11(p*—1) then t#**7'==1 (mod p) and if n|f]](fi—1) i=1,...,2n—1, then
ti'#Eer (mod p) if i+4j, for all 1<, j<2r~1. Clearly, ¢, ¢/, ..., t¥* are roots of g.

THEOREM 4. If f=a?—x—a is irreducible over K=GF(p), p is a prime, and
S(f)=p+1, then g=zx?"1—a—a is irreducible over K.

Proof. Assume that g is not irreducible over K. Let ¢ be an element which satisfies
2P —z—a=( Then t#*'=¢+a, and straightforward calculation shows 2 +# "'t -sptl
=[S,(a)Jt+aS,_1(a). Hence t#* 1= —g (mod p), and so t#"-'==1 (mod p) and ¥
are roots of g for i=0,1,---,p. Since S(f)=p+1, by Lemma 8 S:(@)%0 (mod p)
for i=1,2,..p—1, and if = t(mod p) for some 1<i<p then 7' Foilozy. ppi=it=ipil
(mod p)

= [Si@t+aSi (@ =[{S;1(@)} t+aS; ()] (mod §)
< Sim1(a)=0 (mod p), aSi2(a)=S;(a) (mod p).
But, this contradicts to S(f)=p+1. Hence g is irreducible over X.
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