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Let M be a n-dimensional compact Riemannian manifold with sectional curvature
bounded below by one. Then Li and Zhong [3], and Li and Treibergs [4] proved
that if the first eigenvalue of the Laplacian A, is less than some universal constant and
if n<4, then M is diffeomorphic to the n-sphere S7. The purpose of this paper is to
prove this pinching theorem for all # with some extra condition. That is,

MAIN THEOREM. Let M be a compact Reimannian manifold. Suppose the sectional
curvature of M is greater than or equal to 1. There exists an universal constant >0,

depending on n, such that if :<n+c and when [_;Llf)—z_’:k’ B+El1 then M® is
diffeomorphic to S™.

The proof of this theorem depends on the following generalization of a gradient
estimate obtained previously by Li and Zhong [3].

LeMMA. Let M be a n-dmensional compact Riemannian manifold. Suppose Ric (M)
2n—1 and if u is a non constant eigenfunction on M with sup #=1 and inf u=—k where
k<1, then

rul?2<[A—(n—1)] (u+k) Qa+k—u)

where a>1 and az—x_—n(;%Wk, and if 2=n and k=1 then we take a=(n—1)k.

Proof. We consider the function
G(@)=|pul?(2)+[A~(a—1)] (z—a)?
defined on M. Let z, be a point in M such that G achieves its maximun value. At
zy, we have

G;=0 for all 1<i<n. Computation shows (6))]
0= § wttsi+ [A— (n—1)] (ut— ) at @

If we assume pPu+0 at zo, and pick orthonormal frame at zo such that ey=pu/|pul,
then (2) reduces to

O=un+[A—(n—-1)](u—a) at x, )
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By the maximality of G at z), we also have
ozizcizunuz ittt [A— (n—1)] (| 7] 2— e+ As) 4)
: o

By the Ricci calculus ,
E ujuj;= Z] Riciju; uﬂ-z Uittiij
2(71—1)|I7u52 ZIVu\Z (5)
Substituting into (4) yields
02[A— (-1 x—a)?+[A— (n—1)]Aula—u) 6)
However, by Lichnerowicz’s theorem A>n and the assumption that supu=1, (6}
reduces to
0=[A— (r~D](e—u)+iu=(n—1Dut+tali—(n—1)] (7
But this contradicts with the assumption that

inf u=—k> —[2—‘(-71——1_—1)—](,!

P
unless

ulzy) =—k= ~{—-R :ff;l) }a

or
Fu(zy) =0.
However both cases imply Fu(zy)=0. hence

G(x)Smgangc [A—(n—1] (u—a)?
=M-@-D]@+k Cati—u) (8)

Proof of the MAIN THEOREM. As in Li and Zhong, we apply a theorem of Grove
and Shichama [1]. In Li and Yau [2], it was proved that when Ric(M)=1, then

the non constant eigenfunctions of M satis{y
[Pu|® <sup[ A—a—1D]100(w+uw)?) +iu(w+uw) } 9)

—(w+u)? T ren r2
where w is any constant, and r’=sup(w+u)% If we set w= k;l , B= I;k then
(9) implies
pul” - <2 (10)

(ut+k)(1—u) = 1+k°

Combining with our lemma we obtain

|Pul?< e+ Dmind <2 1), [h— (-1 @at+k—w)

(1-w), and [1—(r—1)]

Let u, be the intersection of the two linear functions

1+k
(2a+%k—u). One solves that

_ (=D C+HA+R - R+ 2+ Dk+2-2)
=2 1+ -1 A+£8

(11
If 21:71, then
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_ 22— (14k) (2a+F)

o Sn-(1h : 12)
We claim that it is always possible to choose @ such that M satisfies
az1l, a>(n—1)k and 0<u,<1 (13)
P 2n
if A h 2

First assume that k<—7z~%i_' Then it is trivial to see «=1 satiesfies the first and

1
n—1"

third inequalities. If £> then leting a=(n—1)% we obtain the condition 2n—

A+8) (2(n—1)k+£) >0, which is equivalent to (1+k) > 2n . And it is satisﬁed

2n—1
especially when (1+4)2>1.

Therefore, by continuity, for ;<z+C for small enough C, it is alway possible to
find a satisfying the inequalities (13). Suppose r is a minimal geodesic which joins
the maximum and the minimum point of u. Let ry and r; be the two segments of r
which connects a point with value %, to the maximum and minimum points respectively.
Then we obtain as in Li & Zhong

1+4 (! du 1,
ok W VB e <Y 1
1 1 #g du
and D) I VT B ati—ay L2 (15)
One computes easily that
1 du =% _aresin Qup—1+4k
w v (wtk)(1—u) 2 1+£
o du _ T . gtk
and J_k Vur® Cth—uy g AT
. N _ 2n—(+k Qa+k)
Especially when 3;=#, and uy= =11 )
we have
1+k [ . 2;1—4a—(3k—1)) . . B+ (a+Dk+2an+a—2n
a> o < 5 —arc sin Tn—(1+ B + 5 —arc sin Cn— (1= F) @+ B

(16)

The right hand side of (16) is bigger g if kS’—LiT as in Li and Zhong if we

choose a=1. If k= nil , let a=(n—1)% Then the right hand side of (16) becomes
1+%2 / = . 2n—dnk+k+1
—2;—& 5~ —arc smm)
-+ g —arc sin kz(;z(zn(l—%l—)ké )_k2
One readily checks that it takes minimum value at k:—i—, in which case

n—1
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1 T . 2n°—5n > T .1
12751 <2 are sin gy g, —g ) T g AN sing Ty >w/2.

This concludes the proof of the theorem.
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ReMARK: Recently C.B. Croke (Invent. math. 68, 253-256(1982)) solved the eigen-
value pinching problem up to homeomorphism. But it remins unsolved to
show that it is actually diffeomorphic to the standard sphere.
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