A NOTE ON THE ALGEBRA $A_E(\Gamma)$

In Memory of Professor Dock Sang Rim

SUNGWOO SUH

1. Notations and Introduction

Let G be a locally compact abelian group with dual group Γ . We denote by $A(\Gamma)$ the algebra of all Fourier transforms of functions in $L^1(G)$. That is:

$$f \in A(\Gamma) \Leftrightarrow f(x) = \hat{F}(x) = \int_{G} F(y)(-y, x) dy$$
$$x \in \Gamma, y \in G, \ F \in L^{1}(G)$$

with norm $||f||_1 = ||F||_{L^1}$. $A(\Gamma)$ is a semi-simple commutative Banach algebra and Γ is its maximal ideal space.

Let E be a compact totally disconnected subset of Γ . Define

$$A_E(\Gamma) = \{ f \in A(\Gamma) : \mathfrak{T}U_f \supset E, \text{ open in } \Gamma, \text{ such that Card. } f(U_f) < \infty \}.$$

This algebra was used by Varopoulos in his proof that Kronecker sets are sets of strong spectral resolution.

It is clear that $A_E(\Gamma)$ is a self-adjoint subalgebra of $A(\Gamma)$. Also, for each x in Γ there is f in $A_E(\Gamma)$ such that $f(x) \neq 0$. Furthermore, $A_E(\Gamma)$ separates points on Γ .

Therefore, we may conclude by the Stone-Weierstrass theorem that $A_E(\Gamma)$ is a uniformly dense subalgebra of $C_0(\Gamma)$ as well as $A(\Gamma)$, and that $A_E(\Gamma)$ is an A-norm dense subalgebra of $A(\Gamma)$ if Γ is a totally disconnected locally compact abelian group [Th. 1.4., 5]

In the case that $\Gamma = T$ the circle group, $\mathbb{R}/2\pi\mathbb{Z}$, we denote by $\mathbb{C}^{\infty}(T)$ the algebra of all infinitely differentiable functions on T and define

$$C_E^{\infty} = \{ f \in C^{\infty}(T) : \mathcal{I}U_f \supset E, \text{ open in } T, \text{ such that Card. } f(U_f) < \infty \}.$$

It is easy to see that C_E^{∞} is a separating self-adjoint subalgebra of A(T), so that C_E^{∞} is a uniformly dense subalgebra of C(T). Also, it is well known that $C^{\infty}(T)$ is a dense subalgebra of A(T).

J. J. Benedetto has proved the fact that if m(E)=0 then $\overline{C_E}^{\infty}=A(T)$ [2] (originally contained in [3]) using Pseudo-measures and the Hahn-Banach theorem. So we have $\overline{A_E(T)}=A(T)$ if m(E)=0.

Also it is a noteworthy fact which Rudin and Katznelson pointed out in their paper [3] that there exists a compact totally disconnected subset E of T with positive measure such that $\overline{C_E}^{\infty} = A(T)$.

2. A Sufficient Condition for $\overline{A_E(\Gamma)} = A(\Gamma)$.

Now, we will discuss this algebra in the case that Γ is not a totally disconnected locally compact abelian group. Especially, we will be concerned about the problem of finding a condition on E for $A_E(\Gamma)$ to be a dense subalgebra of $A(\Gamma)$.

For any non-discrete locally compact abelian group Γ , we find that E being a Helson and Spectral Synthesis set (which we will denote by S-H set) is a sufficient condition (but not a necessary condition) for $A_E(\Gamma)$ to be a dense subalgebra of $A(\Gamma)$. If Γ is discrete, it is clear from the fact $A_E(\Gamma)$ separates points on Γ that $A_E(\Gamma)$ is a dense subalgebra of $A(\Gamma)$ for any compact totally disconnected subset E of Γ , since in this case $A_E(\Gamma) = A(\Gamma)$. Precisely, we state the theorem as follows:

Theorem. Suppose Γ is a non-discrete locally compact abelian group. If E is an S-H set, then $A_E(\Gamma)$ is a dense subalgebra of $A(\Gamma)$.

Proof. We will use the notation $\overline{A_E(\Gamma)}$ for the $A(\Gamma)$ -norm closure of $A_E(\Gamma)$.

Since E is a Helson set, there is a constant M such that to every $\phi \in C(E)$ there corresponds an f in $A(\Gamma)$ such that $f(x) = \phi(x)$ on E and such that

(1)
$$||f||_{A(I)} = M||\phi||_{\infty}.$$

Since E is a spectral synthesis set, that is $\overline{I_0(E)} = I(E)$, we have

$$(2) I(E) \subset \overline{A_E(\Gamma)},$$

where $I(E)=\{f{\in}A(\varGamma):f{\equiv}0 \text{ on } E\}$, $I_0(E)=\{f{\in}A(\varGamma):f{\equiv}0 \text{ on a neighborhood of } E\}$.

Consider the restriction algebra of $\overline{A_E(I')}$ to E, $\overline{A_E(I')}|_{E'}$ which is clearly a separating self-adjoint subalgebra of C(E) since E, being a Helson set, is a compact totally disconnected subset of Γ .

We shall prove that $\overline{A_E(\Gamma)}|_E$ is a uniformly closed subalgebra of C(E). Once this is done, the Stone-Weierstrass theorem tells us that

$$\overline{A_E(\Gamma)}|_E = C(E) = A(\Gamma)|_E$$

To each $f \in A(\Gamma)$ there corresponds a g in $\overline{A_E(\Gamma)}$ such that f(x) = g(x) on E, so that by (2) $f - g \in \overline{A_E(\Gamma)}$. Hence, $f = g + (f - g) \in \overline{A_E(\Gamma)}$, and the theorem follows.

To prove that $\overline{A_E(\Gamma)}|_E$ is uniformly closed, let $\{g_n\}$ be a uniformly Cauchy sequence in $\overline{A_E(\Gamma)}|_E$. Passing to a subsequence (which for convenience we again write as $\{g_n\}$), we may suppose that for each n

$$||g_{n+1}-g_n||_{\infty} < 2^{-n}$$
.

Choose an h_n in $\overline{A_E(\Gamma)}$ such that

$$h_n(x) = g_{n+1}(x) - g_n(x)$$
 for all $x \in E$, and $||h_n||_{A(I)} \le M \cdot 2^{-n}$.

this is possible because of (1) and (2). Also choose $h_0 \in \overline{A_E(\Gamma)}$ such that $h_0(x) = g_1(x)$ on E.

For $n \ge 1$, let

$$f_n = \sum_{k=0}^{n-1} h_k.$$

Then, clearly, we have $f_n(x) = g_n(x)$ for all x in E. Also $\{f_n\}$ is an $A(\Gamma)$ -norm Cauchy sequence in $\overline{A_E(\Gamma)}$, and so has a limit f in $\overline{A_E(\Gamma)}$. It is plain that

$$\lim_{n\to\infty} ||g_n-f|_E||_\infty \leq \lim_{n\to\infty} ||f_n-f||_\infty \leq \lim_{n\to\infty} ||f_n-f||_{A(I)} = 0.$$

Hence, $g_n \rightarrow f|_E$ uniformly on E, and this completes the proof. Q. E. D.

S. Saeki [4] has proved that every extremally disconnected compact set E in Γ (that is, the closure of any relatively open subset of E is relatively open in E) is an S-H set. So, we have:

COROLLARY, Suppose that E is an extremally disconnected compact set in Γ . Then $A_E(\Gamma)$ is a dense subalgebra of $A(\Gamma)$. Q.E.D.

The Cantor one-third set F in T has measure 0, hence $\overline{A_F(T)} = A(T)$. And it is well known that F is a set of spectral synthesis, but not a Helson set. That is, E being an S-H set is not a necessary condition for $A_E(T)$ to be a dense subalgebra of A(T).

References

- 1. J. J. Benedetto, Spectral Synthesis, Academic Press, (1975).
- 2. J. J. Benedetto, Harmonic Analysis on Totally Disconnected Sets, Springer-Verlag, Lecture Notes 202, (1971).
- 3. Y. Katznelson and W. Rudin, The Stone-Weierstrass property in Banach Algebras, Pacific J. Math. 11, 253-265, (1961)
- 4. S. Saeki, Extremally Disconnected Sets in Groups, Proc. Amer. Math. Soc. 52 317-318, (1975).
- -5. S. Suh, The Space of real parts of algebras of Fourier transforms, Pacific J. Math. 95, 461-465, (1981).

Department of Mathematics Louisiana State University Baton Rouge, LA 70803 U.S.A.