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1. Introduction

The demand for available trip alternatives has peculiar characteristics thathave made it difficult
to apply the neoclassical consumer theory for proper understanding of trip-maker’s behavior. Firstly,
quality of service such as travel time and service reliability significantly influences the consumer’s
choice of trip alternatives. Secondly, the consumer usually utilizes more than one alternative, in
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travelling from one point to another.

The main theme of this paper is to introduce a new approach to the trip demand analysis which
can accommodate the two peculiar aspects mentioned above. This approach is on the same line
with the household production theory which includes value of travel time in estimating the real
price of trip, similar to Becker (1965), Moses and Williamson (1968), and Willig' (1978). Its
departure from the household production theory is to consider value of travel time as a random
variable having a certain distribution.

The adequancy of the approach mentioned above could be ascribed to the fact that value of travel
time refers to the implicit price of travel time perceived by a consumer, and that his perception is
affected by many uncertain factors. To accommodate this point in the conventional demand
analysis, "this paper specifies the decision problem of the consumer having multiple trip alternatives,
as a stochastic programming problem. This stochastic model, unlike the traditional utility maximiza-
tion problem, is designed to find the optimal consumption choice, including the trip demand, which
maximizes the expected value of his satisfaction level within his budget ocnstraint.

Like the demand function of the traditional consumer theory, the trip demand function of the
stochastic decision problem has the image corresponding to the optimal trip frequencies for the given
real price of the available trip alternatives. As to be shown later, this demand function is expressed
as indefinite integral with respect to the random variable of value of travel time, where the integrand
and domain are the functions of the real price. It is also verified that the function can properly
characterize the two peculiar aspects of the trip demand introduced earlier. Furthermore, it is
proved that the comparative static of the function has the property of a gross substitute and diagonal
dominance among available trip alternatives, which has been implicitly assumed in the various
methods for the trip demand estimation.

This paper proceeds as follows, Section 2 presents the analysis result for the demand function
derived from the preference ordering problem of a consumer with perfect information on the real
price of available trip alternatives. Section 3 characterizes the trip demand function for the
consumer’s problem of a stochastic programming model. This stochastic model has the identical
structure with the deterministic problem of the previous section, except with the difference that
value of travel time is specified as random variable. Subsequently, Section 4 introduces the analysis
result for the continuity and comparative static of the demand function defined in the previous
section.

II. Trip Demand Function under Certainty for Value of Travel Time

The demand for a trip is commonly called as a derived demand. As one can infer from this term
of the derived demand, the trip is not an ultimate ingredient determining a consumer’s level of
satisfaction, but means to go to a destination apart from an origin for a certain activity. This state-
ment, in turn, implies that utility of the consumer is determined by the total number of trips between
a pair of points, regardless of the trip alternative chosen by him.

A relevant question is how to assess the consumer’s choice of a trip alternative from a set of the
available one, which cannot be comnprehended through the simple comparision of their service
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charges. One approach to assess it would be to apply the concept of real price introduced in
Becker (1965). It assumes that the real price of a trip alternative is a sum of the service charge and
value of his resource consumption associated with its travel time, which is usually termed as value

of travel time.
A problem is how to valuate the shadow price of the consumed human resources that are not

traded at the market. One approach is to take as a deterministic quantity, another one is to
hypothesize it as a random variable. This question, which has not been carefully assessed in the
previous studies, will be the main issue of the demand analysis presented in this paper.

In this section, it is assumed that value of travel time is a deterministic quantity. In addition,
it is also assumed that the trip between a different pair of points is a different commodity. Then,
without loss of generality, the decision model of a neoclassical consumer could be formulated as a
preference ordering problem stated below.

Assumption 1 utility index of a consumer is determined by the total number of trips Ex ie<l],
I>, and a numeraire y, where X; is the number of trips made via trip alternative i, servmg between
a particular pair of points, and <1, I> refers to the index set representing the available trip alterna

tives.

Assumption 2 The Utility function of a consumer is neoclassical, i.e., strictly quasi-concave and
twice differenctiable in Zx;andy.

Assumption 3 The real price of i is ; twt; where r; is service charge of i, t ;s travel time of 7, andw
is a positive real number representing value of travel time.

“Under Assumptions 1, 2, and 3, the decision problem of a consumer can be expressed as below: '
maximize u (in’ y) .................................................................................. (1)
l

. 1
subject to 2 (r; + wt;) x; +y <m, x; 20, Vi,y =0
H

where m refers to an intial enaowment, compriced of monetary imcome and other human resources.
Definition 1. For the decision problem in (1), the trip demand function for any je<1, I >, denoted

by X, is defined by
@% @) =% lu(Fx,y) -7 (p)>0)
where p=(r,t,1,m), 1 =(1y, o0, T, t = (ty, oees tl)’ and

(b) T (p) =max { u (Ex;,y) IZ (G +wt)x;*y <m,x; =20, ¥V,

i

A good starting point to analyze the mathematical stucture of X; would be to identify the trip

alternative chosen by the consumer. The answer to this question is that the trip-maker chooses

the least cost alternative, in terms of the real cost, as formally stated below.

Proposition 1.  Let the index set of the least cost alternatives, S, be defined as
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Sr,)={j€ESLI> Ip+wt;<h(, )}, whereh (1, t) = inf (r; + wt)).
H

Then, under Assumptions 1, 2, and.3,]
@) X;(p)=0,if i€ES(r,1)

(®)%; (p)=0, ifi€S(1,1)
L Xp) =% ‘
(c)IES(.)x () v>1: % (p) >0

(Proof) (a) and (b) are self-evident. The equality in (c) is the consequence of the assumption that
u is strictly quasi-concave, i.e., such an objective function of u in (1) yieds a unique value of Zx;
together with T (p). X l

The statments of Proposition 1 can graphically be explained with use of Figure 1. In the figure,
j is the least cost option, and the real cost of i is more expensive than j. From the figure, it can be
inferred that the highest level of the consumer’s satisfaction is achieved by choosing x*]. and y*.
Furthermore, it can be inferred that his satisfaction is indifferent from the availability of i.

Figure 1

St wt, ;4
I wtl r].+wtl, i

Another aspect of Proposition 1 can be explained by using Figure 2, which represents the real
price of two available alternatives, as the function of w, value of travel time. This figure depicts, if
value of travel time perceived by the consumer is w', then r, +wt, =1, + wt, . From the figure, it can
be inferred that, if w is smaller than w', Alternative 1 is the least cost alternative and x; (p) >0,
where p = (r;, 12, ty, t, 1, m). On the other hand, if w is larger than w’, Alternative 2 is the least
cost alternative. However, if w is equal to w', the two alternatives are the least cost ones
simultaneously. Then, x,(p) and x, (p) are degenerate, but x; ,(p) + X, (p) is unique, by Proposition 1.



68 TRSK JOURNAL VOL. 1 NO. 1

Real Price

Figure 2 Iy +wty

nt wiy

1
!
}
|
i
1
1
|
1
1

w' w

At this point, it should be mentioned that the neoclassical consumer problem in (1) can be
converted to a preference ordering problem of the household production approach. Also, it should
be noted that Propostion 1 can be applied in showing that the two problems yield the same optimal
solution for any p. This issue is discussed below.

The first step problem of the new consumer theory is to estimate the minimum production cost
of Zx;, an ingradient of the utility function. The optimal solution to this special problem of the
household production is that the unit cost is h(r, t) defined in Propostion 1. The next step problem
is to maximize his utility, and can be expressed as:

MaxXimize U(X, Y) orereeeoseiemmminii e e 2
subject toh(r,t) x +y<m, x,y=0

where x = 2x,.
1
The decision problem in (2) has the identical structure with the neoclassical consumer problem
for the two commodities of x and y, except that the price of x is a function of two exogeneous
vectors r and t. Hence, it is possible to evaluate the mathematical structure of the trip demand func-
tion for the problem in (2), by using the well-known result of the neoclassical demand analysis.

Definition 2 For the preference ording problem in (2), the trip demand function, x', is defined by

@ X @)={xlukxy)-m' @) >0},
where' p’ = (h (1, t), 1, m), and
®) m P)=max{u(x,y)lh(,t)x+y<m,x,y=>0};

Proposition 2 Under Assumptions 1, 2, and 3,

(a) his continuous in r and t.

(b) x' is continuous in r ant t.
(Proof) The continuity of h is a direct consequence of the fact that the pointwise infimum of concave
functions is also a concave function, which is continuous. The assertion that x' is continuous in
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p', if u is strictly quasi-concave, is a well-known fact in the neoclassical demand analysis [ See Arrow
and Hahn (1971)]. Hence, x' is continuous in r and t, by (a).

Proposition 3 Under Assumptions, 1, 2, and 3,
(@ xX'(p)= Z%,(p)

Suppose j € <1, > is only one element of S(r, t). Then, the above expression is simplified as
®) X" (o) =%;(p)

(Proof) By Proposition 1, if JES(r,t), it is clear that h(r, t) =, + wtj. Then, the optimal value of
ZX; for the problem in (1) is equal to the optimal value of x for the problem in (2). This implies
(a) and (b).

From Propositions 1, 2, and 3, it can readily be stated that X; is continuous in r and t, except
at points where the image of ’-‘i is degenerate. This conjecture is formally stated below.

Proposition 4 Under Assumptions 1, 2, and 3, for every i€<1, >

(a) %; is upper semi-continuous in r and t.

More precisely,

(b) X; is not continuous at (r, t) such that ;e S(r,t)yand r; + wt; = rtwe »i%], but X; is
continuous at other points of (r, t).

(Proof). (b) implies (a), only if the image of X; at (1, t), where X; is not continuous, belongs to a
compact set. Hence, it is sufficient to prove that the image of X; belongs to a compact set at (r, t)
such that i€S(r,t) and rptwt= 1+ Wt i#j, and that X; is continuous at other points of
(r, t). The first part that the image of X; belongs to a compact set, whose lower bound is zero and

the upper bound is x' (p'), is obvious by Proposition 3. The proof of the second part that X; is
continuous is to be worked for two cases separately. If i & S(r, t), then the image of X, is zero at

the neighborhood of (1, t), by Propostion 1. Hence, it is continuous at that (1, t). On the o{her hand,
ifi is only one element of S (r, t), then the image of ii is equal to that of x’ at the neighborhood
of that (r, t), by Proposition 3. Therefore, it is continuous at that point, by Proposition 2.

The comparative static of X; can also be asessed by identifying the relationship between X; and
X', since that of x' can readily be characterized by using the analysis result of the neoclassical
consumer theory.

Proposition 5 Suppose x' is a normal good. Suppose further i€ H< 1, D> is only one element of
S(r, t). Then, under Assumptions 1, 2, and 3,
ax'(p")  ax;
(®") _ Xi(p) <0
Br,— or

@) .
®) Ix(p) _ 3%i(p)
ot; oty
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(Proof) This proposition is obvious by Proposition 3 (b) and the assumption that x' is a normal
good.

Proposition 6 Suppose x;, for every i€ <l,I>isa normal good. Then, under Assumptions, 1,
2,and 3,

o%i(p) _ 1 3%(p)

or; w ot

(@)

<0, if i is only one element of S (r, t).

(b) _____ij(p) = __J__BY-(p) =0, if iandfor j ¢ S(r,t).

ari at,-
(Proof) Show first (a). If i is only one element of 8 (1, t), X,(p) = x'(p"), by Proposition 3. Hence, it
can be said that (a) is nothing but an alternative statement of Proposition 5. The proof of (b) is to
be worked out for three cases separately. If i€ Sandj &S, the assertion follows from the fact
that the image of T(I at the neighborhood of p is zero. By the same token, ifi and j & S, the assertion
is valid. On the other hand, if i & S but j € S. the equality follows from the fact that %.(n) =x'(p) and
that 9h(-)/dr, = oh(-)/ot; =0. X

The trip demand function examined so far has been derived from the preference ordering
problem of a consumer constructed under theassumption that value of travel time is constant. This
demand function can yield a plausible result that the consumer’s level of utility is indifferent from
the availability of trip alternatives other than a chosen one, as one can infer from Proposition 1.
This function, however, fails to explain a number of important aspects related to behavior of trip-
makers, Firstly, the function cannot properly characterize the cross-elasticities among available trip
alternative, as one can infer from Proposition 1, Secondly, it cannot accommodate the fact that the
consumer usually utilizes more than one trip alternative in travelling from one point to another, as
one can infer from Proposition 3 implies.

IIL. Travel Demand Function under Uncertainty for Value of Travel Time

The implicit price of travel time refers to the perceived cost for human resources consumed
in making a trip. Therefore, this price can hardly be quantified in an objective manner. Moreover,
perception of the consumer is affected by many uncertain factors, such as his physical condition.
For this reason, it does not appear to be feasible to find a fixed price of travel time, which can be
applicable to all the trips made by the consumer during a certain period.

A plausible approach to assess the choice of trip alternatives made by a consumer for a certain
period could be to hypothesize that the implicit price is a random variable.Alternatively, it may be
assumed that the consumer has his own subjective distribution of the price, which reflects his
previous experience. This uncertain decision environment could be expressed as follows.

Assumption 4 The implicit price per unit ‘travel time, w, has an integrable density function, g, such
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that S, 8w)dw =1 (or f 3' g(w) dw = 1), defined on the d-compact set W which refers to a
closed interval [w',w"].

Uner Assumptions 1, 2, and 4, the decision problem of a consumer can be expressed as a stochastic
programming problem stated below:

maximize E[U(IZX,'(W), y(w))] 3

subject to ?(r,- +wt) x(W) + y(w) <m, Xi(w) 2 0,%;, y(w) >0,

for every w € W, where E refers to the expectation operator. Here, it should be noted that the
choice variable of x; and y are to be expressed as the function of w [Refer to Rockafella (1978)].

Definition 3 For the decision problem in (3), the stochastic trip demand function 6?1-, je <1,
is defined by

@ %;(p)= {E[x; ()] | E[u@x(w), y(w))] — ir(p) >0, ;‘?(ri + W) x{(W) + y(w) <m,

Xi(w)>0. ¥, y(w) >0 [V weW} wherep=(ry, .., 1, ty, ... tj, 1,m), and

(b) T(p) =sup {E [u(le,-(w), y(w)] | ?(ri twt;) X,'(W) ty(W) < m, x;(w) >0, ¥, y(w)>0 |
wEW }

In the above definition, the function M(p) corresponds to the optimal value of the objective
function for the problem in (3). This function, representing the expected value of the consumer’s
optimal utility level; is a Lebesgue-Stieltjes integral which can be expressed as:

I/fl(p) = fW U(?X,’(W), YW)) BW) AW, oo 4)

where X; (W) and y (w) refer to the optimal value of X; and y, respectively, for a given p. The
functions x; (w),Vi, and y (w) should satisfy the budget constraint for each w, as indicated in De-
finition 3 (b).

Using x; (W) in (4), the value of the stochastic trip demand function %;(p) can be estimated. More
precisely, the function X;(p) is a Lesbesgue-Stieltjes integral, whose integrand is x;{(w) in (4), and can
be expressed as:

Rip) = fW X WY BIW) AW oreeii et )

Therefore, the key to understand the structure of X; is to derive the specific expression of x;(w) and
y(w) in (4). This question is discussed below.

Proposition 7% Let%;, 7€<1,I>, be an arbtrary function satisfying the condition such that
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(@) [y & (W) —X(w))dw =0

whre %; is the demand function of Definition 1. Let ¥ be an arbitrary function such that
(b) Sy TW) -y W) dw =0

where 7 is the demand function of y, which can be defined in the same manner as X;. Then, under
Assumptions 1,2, and 4,

(©) AP) =E[UERAPW), TN oovvevrrereismemsnissssssis ©)
(@) 2dp) = E[%; (p, W)].
(Proof) By definition, (c) implies (d). On the other hand, the definition of X; andy implies
E [u (Z%; (p, W), 7, W) = E[uEX; (p, w), Y(p.W))]-

Hence, the proof can be completed by showing that

m(p) = E[U@ii(P,W), FUP,W)) | wevevemermeermene e O]

Prove first the integrability of u(ZX;(p,w), ¥(p,w)), by showing that it is continuous and bounded
H

in wEW for any (r,t). The objective function u is continuous and bounded, by assumption. Therefore,

it is sufficient to prove the integrability condition of X; and'y, since the composite function of two

integrable functions are also integrable. As shown in Proposition 2, Z%; is equal to x" which is a

function of h, and x'. and h are continuous in h and w, respectively. Also, x' and h are bounded, by

assumption. Hence, ¥; is integrable. The integrability of ¥ can be proved in the exactly same manner.
Show next the equality in (7). By definition, it follows that

m (p) = E[u(?ii(p,w),'?(p W) T cremr e (8)

On the other hand, by Proposition 2, u(ZX;(p,w), ¥(p,w)) is unique and satisfies the condition such
that

U(lZi,(p W), ¥(p, w)) = u(lzx,-(w), YAW)) reereremermserrisssaess s s ©)

for any w €W, where x; and y are arbitrary integrable functions which satisfy the constraint of the
consumer’s decision problem in (3). Hence, it follows that

E [u(§x,- (P, W), T(p, W)) ] ZRP) covevemrevereeneens et (10)

From (8) and (10), the equality (c) follows. [

Proposition 7 implies that Xi(p) can be expressed differently as:

/)\(l(p) = fw_)?l(p’ w) g(w) 1 (l 1)
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The structure of X;(p) in the above equation can be explained easily with the geometry of X;(p,w)
examined in the previous section. To facilitate the forthcoming discussion about this issue, a number
of terms need to be introduced.

Definition 4.  The effective domain of trip alternative i €< 1, 1>>, denoted by Wi, is defined by

Wir,t) = [WEW |1;+ wt; <h(r, 1)

Definition 5 Let u be a positive measure defined on W. Then, for i€<1, I>,

(a) Alternative i is relevant, if u [Wi(r, t) ] >0.
(b) Alternative i is irrelevant, if ulWi (r,t) ] =0.

The definition of terms can easily be understood by examining Figure 3, which depicts the real
price of available alternatives and the probability denisty function of g(w) for varying w values. In
the figure, the effective domains of i -1, 7, i + 1 have non-empty interiors. Hence, they are releveant
alternatives whose probabilities to be chosen by the consumer are S WE(*) g(w) dw, k =i-1,i,i+l.
On the other hand, the effective domains of j and j+1, as depicted in the figure, are characterized by
an empty set and an empty interior, respectively. Therefore, they are irrelevarnt alternatives which
have zero probabilities.

Figure 3 Figure 4

Real Price i
Real Price

et

rtwt
Ter T WYy LA
Gty v

e,

KO R

her,t, w)

1
! | Loy twe
! ! o1 ¥ WY,
! i
i
'
) X (p,w)
w /
X p (%))

' . . . .
*In this section, the functions x;, x , and h were defined by taking w as a constant. In this section, the notations of
X{, x', and h refer to the functions which are defined in the same manner with the respective expressions of the
previous section, except with a difference that w is taken as a random variable.
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Another diagram of Figure. 4 illustrates a possible configuration of x; {p,w), by using its relation-
ship to x' (p(w)), where p'(w)=(h(r, t, w), 1, m) and h (r, t, w)= 1’2 (rtWty ). The bold curve in the
upper part of the figure shows the geometry of h (r, t, w) for a given (r, t). This curve illustrates that

h(r’ t,W)=Ii+Wti,if w ewi (r,t), .............................................................. (12)
h(r,t,w)#r; +wt;, if W GE W (I, 1), worveeeeememmsmmsnrsres s sttt (13)
On the other hand, the bold line in the lower part schematically represents the geometry of X;(p,w).

This curve is developed by identifying the relationship between X;(p,w) and x,(p'(w)) such that

X(p' (W) =X(p, W) > 0, if W € interior of Wy (£, t), -+ eeerererrereremniincunincssinnns (14)

X' (W) EXAPW) =0, i WEW; (1, 1), -woeerreeerermemmresoesieeinieneees e (15)

where (14) and (15) are alternative expressions of Proposition 3 (b), and Porposition 1 (b), re-
spectively. Finally, it should be noted that the representation that x'(p'(w')) is downward with
respect to w reflects the assumption that x' is a normal good, since h(r, t, w), a variable of x’, isan
inceasing function with respect to w.

Proposition 8 Suppose (1;, t;) # (17, t;), for every i, j €1, I>, i#j. Then, under Assumptions 1, 2, and
4’

RiP) = L)X (0 (W) g(W) dw,
where W;(-)stands for W;(r, t).

(Remark) This is obious by the above discussion. [X]

Using the above proposition, the value of X(p) is schematically represented in Figure S, as a
shaded area. The integrand of %;(p) correpsonds to the multiple of x'(p (w)) depicted in Figure 4,
and g(w) illusirated in Figure 3.

Figure 5

h(r, t,w
1) Tieg WL

Ltwt

FORALN

X, (p) X (p'(w))g (w)

X, (p)
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IV. Comparative Static of Stochastic Trip Demand Functions

This section presents the result of analyses on the continuity and differentiability of the trip
demand function X; derived from the stochastic programming problem of a consumer. As to be shown
later, %; is continuous and differentiable in r and t, except at a set of points such that W(r, t) is not
an empty set and (ri’ti) =(rj, t]-). This exception corresponds to the situation that two relevant ‘
alternatives of i and j have the identical service characteristics.

The continuity of X; can be characterized by using the formula in Proposion 7, where the in-
tegrand is ii' On the other hand, the differentiability of 5"(1. can only be characterized by applying the
equation in Proposition 8, where the integrand is x' or X;. This difference implies that, unlike the
former, the latter can only be characterized by applying a restrictive definition of ii which can be

obtained from the alternative expression of Defintion 3, such that the suprimum in (b) of that de-
finition is replaced by the maximum. For this alternative definition, the integrand x’ is absolutely

continuous on W, by Proposition 2. This absolute continuity of x', is a necessary condition for the
diffentiability. However, the integrand ’ii is an arbitary element belonging to the collection of
functions, such that E[X(p, w) - x; (p, w)] =0, and this function is generally not absolutely con-
tinuouson W,
Proposition 9. Under Assumptions 1, 2, and 4, for every i€<1, I>,
(a) X; of Definition 3 is upper semi-continuous in r and t.
(b) %; of Definition 3 is continuous at every (z, t), except at the point such that Wi(r, t) is not empty
and (r;, ;) = (rf’ tj), 1%,
(Proof) The proof of (b) is presented Appendix. If (b) is valid, the proof of (a) can be completed by
showing that the image of )”(l. at (r, t), where it is not continuous, belongs to a compact set. This fact
is illustrated with an example below.
By trite calculation, it can be shown that the set W,(r, t), depicted in Figure 5, is computed by
using the following:

Wi, = [0; (1, 0,07 (] e (16)
R I T
= [ , ]
Gt tep —

where 8; and 6" are functions estimatiing the lower and upper bounds of W;, respectively.
Using the above equation, %;(p) can alternatively be specified as indefinite integral such that

i\l(p)= f:;'(') x,(pl(W)) g(w) AW T T e e aas (17)
)

From the above epxression, it can be inferred that, if 6',~(r, t) or 0;'(r,v t) is degenerate, )?i (p) cannot
be defined.

“For example, if (r;,t,) = (r;, ;, t;4 ), then, 8; (r,t)and 6" (r, t) are indefinite. Then, the indefinite
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integral Xi(p) cannot be estimated. However, from Proposition 3, one can deduce that
X 8 ) 10NN o) e ceeeeees e st enern e 18
Xl(p) + xi+l(P) =fe 5’( ) Xl(p'(w)) g(W) BN TZLLE L PR E PP R PPPIPPPPEPPRTELTE ( )
6.(")
1

Hence, it can be concluded that Xi(p) belongs to a compact set, whose lower and upper bounds are
zero and X (p) + ], (p)> Tespectively. &
Proposition 10 Let x;, i€<1, >, be expressed by

@ %=1 O K G)aw)dv,
i )

as introduced in  Proposition 8. Suppose also that ?(i is continuous at a certain (r, t), then

(b) Rj(p) is differentiable at that (r, t)

) a%(p) 0”(-) aX'(') ae”(.) f ae’(')
= Y, . +X () () —— -XC)g)— '
(C) al'i fol’ - 8r,' g( )dW X ( )g( ) al'i w = 0]1/ ) ari w = 0’(-)
H
3 . 20" . , 30'(*)
@@ = B HO ) 50 O \ PN OO parald ,
at,‘ e:(.) ari i i ati w = 0] (*)

(Remark) The proof is listed is Appendix. X

Proposition 11 (Continuation of Proposition 10) Suppose further that x;, i€<1, [>, is a normal good.
Then,

3xi(p) <o 3X{p)

a R = U.
@ or; ot;
%i(p) %
O 5o ) S s
A A ~ ~
© ax,(p)i S5 B B o FE)
ar; j#i o org ot; JFio oy

(Remark) The signs shown above can be verified by using (c) and (d) of Proposition 10, More precisely,
it can be proved by checking the three terms in the left side of the two equations. The sign of the first
terms can be evaluated by examining the integrand of the terms, which can readily be determined
with use of Proposition 5. The second and third terms can be identified by using the specifiic ex-
pressions of 6;" (r, t) and 6]-' in (16), respectively. The evaluation of the sign of those terms is straight-
forward, but complex. Hence, the detailed computation is omitted. Instead, an informal proof of
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those signs are presented below. X
A set of inequalites in (a) and (b) of Proposition 11 indicates that a set of avaiable trip alternatives
are gross Substitutes. The two inequalities in (c) imply that the trip alternatives are diagnoal do-

minances each other. Using Figures 6 and 7, those properties are verified below.
Figure 6 Figure 7

h(s t,w).
(r +dry) +wi, hr.t.w)
ntwe, Tt Wit de)

rwy

% (p)
p)

Suppose the service charge of a relevant alternative 7 is changed from 1; to ry4dr;. This change
increases the image of h by dr; at the effective domain of i, Wy(r, t), as illustrated in Figure 6. This
increase, in turn, decreases the image of x/, the integrand of x;’ at W;(r, t), since x; is a normal good.
The decrease in the image of x:, in turn, would result a decrease in the value of x;, by the dotted area
shown in the figure. On the other hand, the change of r; also causes a chang in the inage of W;. In
other words, the domain of the integral is shrinked from W(z, t) to a smaller set, as illustrated in
the figure. The shrink of the effective domain, in turn, results in an decrease in the value of x; by the
two shaded areas shown in the figure.

In summary, an increase in r; would result a decrease of the demand for i, which is equal to the
sum of the dotted and shaded areas. This implies the inequality in (a) of the proposition. On the
other hand, the shaded areas correspond to the modal shift of the trip demand among the competing
alternatives. This modal shift constitutes the inequality in (b). Finally, it should be noted that this
change in r; results in the decrease in the total number of trips, which is equal to the dotted area,
and which consequences the inequality in (c).

Figure 7, which shematically illustrates the impact of an increase in travel time, can be interpreted
in the exactly same manner as Figure 6. Therefore, the explanation will be omitted.

V. Concluding Remarks

A new approach is introduced to assess the trip-making behavior of a consumer to whom multiple
trip alternatives are available. The essence of this approach is to analyze the decision of a trip-maker
for a certain period under the assumption that the implicit price of travel time perceived by him is a
random variable. To accommodate such an uncertain decision environment, this paper formulates
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the consumer’s decision model as a stochastic programming problem.

The advantage of the approach can be ascribed to a number of findings obtained through the
analysis of the stochastic trip demand function, which refers to the demand functions derived from
the decision model mentioned above. Firstly, the demand function can characterize the possibility
that the consumer may utilize more than one trip alternative for his trip. Secondly the demand
function for a certain trip alternative is sensitive to the service charge and travel time of the com-
peting alternatives as well as the corresponding one. Thirdly, the function has the property of a gross
substitute and diagonal dominance among the available alternatives.
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APPENDIX

A.1 Proof of Proposition 9 (b) .
The proof can be completed by showing that f- R” - R defined below is Lipschitzian in t € R”,

f(t)=v‘06,:,((:)) x (t, w) GIW) AW e oeeeeree (A. 1)

where f, x, t stands for %;, %;, (r, t), respectively. (For simplicity of discussion, the proof is worked
out by using (A. 1))

Since, 6’ (t) and 8"(t) are continuous at the point t, where the continuity of f is evaluated, it is
possible to pick the positive numbers @y and a,, such that

10 (4 5) = 8" ()1 g | S, wwrvrerrresomesemceseemsersssensnissinnns (A.2)
18" (t+8)— 6" ) Il <ay I SII.

where 6’ and 8" are continuous on [t, t+s] . On the other hand, since x and g are Lebesgue integrable,
there are the continuous functions y and z such that

J[x(t,w) —y (t,w) ] dw =0,
JTaW) = Z(W) ] AW = 0, cririiieiiiiieee e (A.3)

for every t. Then, it is possible to pick §; and §,, such that

max{ y(u,0" (u))z(8 (u) !t <u<t+s } <8, B
max { y(u,0" (u))z(@" ) lt<u<t+s ) <p, 7 (4.49)

Furthermore, it is possible to pick the integrable function h such that
HEX (s, W) =X ()] W) I ShW) IS, woveerveeesesmmnnnnes (A.5)
for every s. Thus, it can be said that

It +s)— FO N <y By + @y B+l sf%"'((:)) hW) AW Il oo (A.6)

On the other hand, since h is integrable, there is a positive number X such that
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Leta=0a,8; +axf; +\ Then
B+ )UKl S, e, (A.8)

Therefore, f is Lipschitizian, as claimed. ,

A. 2 Proof of Proposition 10
The proof will be worked in three steps. The first step will be to evaluate the differential of h

defined as

B (1, ) = S0 X (1 + W) BV AW, e (A.9)

where x is absolutely continuous in 1, t, wER (r and t are not vectors), and w' and w" are positive.
The second step will be to estimate the differential of f difined by

f(r, t) = fg,’ (I,tt)) X (1— + Wt) g(w) AW oo e s (A 10)
I

s

where the structure of the integrand is identical with the of h, and 8’ and " are continuously dif-
ferentiable in r and t. The final step will be to prove the proposition by using the analysis resuit of

the previous steps.
() Evaluate the partial derivative dh(+)/dr  (and 3h(-)/at). Since x is 3h(-)/dr is integrable, and

ax (r +wt)
or

x(r+wt)——x(a+wt)=f; dr, oo (A.11)

for any a in the neighborhood of h. And, since g(w) is integrable in [w', w'"'}, it follows that

" aX(r + Wt) "
h(r, t) =f; dr [fxr —_— g(w)dw ] +fx’u x(a + wt) g(w) dw (A.12)
Differentiating the both sides of the above equation, it follows that
oh(r, t "
# =", m gW)AwW. ... (A.13)

or v or
Finally, it should be noted that dh(’)/3t can be evaluated in the sam‘e manner.
(b) Evaluate the partial derivative 3f(*)/dr (and 3f(*)/at). Set

G (r,t,u,v) =f'; X (r +wt) g(w) dw

By the chain rule, it follows
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af(r,t): 3G () . 9aG(-) ou . aG(*) El_
or or du or ov or

The first term of the left side can be estimated by using (A. 13). The second and third terms can be
evaluated by applying the relationship in (A. 11). Then,

af (1, 1) =f0:’(-) BX() 4 x(+)0 ) | _X(_)"(') e (A.15)
8’ () ar dr w=0"¢) ar  w=06()

C. Prove Proposition 10 by using (A. 16). To this end, it suffices to introduce the alternative ex-
pression of x;(p). That is :

"

x(p) = r‘;

C) X+ wt;) f(w) dw if i is relevant,
(.) ( J AT (A. 16)

if i is irrelevant.,

since p'(w) = inf (1 +wt,).
Kk k



