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Abstract

This article presents a deterministic inventory model for situations in which, during
the stockout period, a fraction 8 of the demand is backordered and the remaining
fraction 1@ islost. By defining a time proportional backorder cost and a fixed penalty
cost per unit lost, a convex objective function representing the average annual cost of
operating the inventory system is obtained. The optimal operating policy variables
are calculated directly. At the extremes 8 =1 and 8 = O the model presented reduces
to the usual backorders and lost sales case, respectively.

List of Symbols
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Demand per year.

Total demand per cycle.

Total demand per cycle during the stockout period.
Order quantity.

Inventory carrying cost per item per year.

Fixed ordering cost per inventory cycle.

Penalty cost of a lost sale including the lost profit, p > 0.

AT RO W

Shortage cost per unit time per backorder, # > 0.

1. Introduction

The problem of determining economic order quantity in inventory systems has been treated
extensively in the literature. But most of the results are on two general situations regarding the
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demand process when the system is out of stock : either, all demand during the stockout period
is backordered (backorder case); or, all demand during the stockout period is lost (lost sales case).

However, in many real inventory systems, demand can be paftially captive. In this case only
a portion of unsatisfied demand will be satisfied from the next shipment. If demand is completely
captive, all demands not satisfied are filled upon the receipt of replenishment stock. If demand
is not captive, unsatisfied demand may be completely lost. Thus it may be reasonable to assume that
only a fraction f(O<P<I1) of the demand during the stockout period can be backordered, and the
remaining fraction 1—f is lost. Furthermore, a numerical example shows that making the usual
assumptions of all backorders (or lost sales) when in fact a mixture of the two exists can significantly
affect inventory costs.

Inventory models which consider a mixture of backorders and lost sales have been suggested
(without solving) by several authors (Fabrycky and Banks 1967, Jelen 1970). Montgomery et al.
(1973) suggested. a solution procedure using ‘non-singular transformation’ of the cost function and
complicated two stage minimization. In the first stage, they minimize the cost along the ‘ray’ V=bU.
Once the minimum along each ray of this form is found, they choose the best ray. Similarly, Rosen-
berg (1979) formulated the problem in terms of ‘fictitious’ demand rate’. An optimal solution
is sought using ‘decomposition by projection’ in the stepwise manner specified.

In this paper, the problem is reformulated by defining a time proportional backorder cost and
- fixed penalty cost per unit lost; and solved directly. This simplification results from the different

choice of control variables and noting the convexity of the cost model.

2. Model

We consider the single echelon, single item, constant demand case.
We assurne that the fraction of the demand backordered during the stockout period is known

Q
R

[ NS

S . A% .+_

| : o Haps
3 AN N4

R
-— d _—_———

Figure 1. Behaviour of the inventory system.
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and constant. The total number of demands backordered per inventory cycle is 8§, and the total
number of demands lost is (1-8)S. The behaviour of the system is geometrically represented in
Fig. 1.

The annual revenue received will depend on the length of time for which the system is out
of stock, and hence on the operating doctrine. Thus, one would not necessarily obtain the same
operating policy from a model which minimizes average annual cost as from a model which maxi-
mizes the average annual profit. However, by defining lost sales penalty costs to include the lost
profits, minimum cost and maximum profit formulations yield identical results (Hadley and Whitin
1963).

The average annual cost which is the sum of ordering, carrying, and stockout costs including
lost profit is

K(R,S,3) = [2dA + h{R-S)* + 2(1-B)pdS +pnS*]/2R ; R>8>0 0

K is convex (see Appendix). A sufficient condition that R and § be optimal is that they satisfy

0K/3R = ~[2dA + h(R-S)* + 2(1—P)pdS + prS?] [2R? + h(R-S)/R =0

or

R? = {2dA +2(1—-B)pdS + pnS?] /h + S$? ¢)]
and

aK/3S = [~h(R-S) + (1—B)pd + prS]/R = 0
or

R =[(1-B)pd + (1 +pm)S] /h €))
Solving eqns. (2) and (3) simultaneously to eliminate R, we obtain
(h + pm)S? + 2(1-B)pdS + { [(1-B)pd]* ~2hdd} [Br =0
Solution of this quadratic equation yields the result
§* = [~(1-B)pd + (R{2dAR + Br) {(1—B)pd) *} /Bm)] (1 + ) 4)

Since 8%K/aS? > 0, in the event that the § value computed from eqn. (4) is not positive (or
real), then the S* lies on the boundary and §* = 0. This occurs when the quantity inside the square
root in eqn. (4) is less than [(1—8)pd]? or

0< 8 <1-(/pNrad™ )

In this case, eqn. (1) is reduced to the basic EOQ model and

(t) Note that when 1—(1/pW/(2hA/d)<B=0, there should not be any inventory system since this
condition implies that incurring the cost of lost sales all the time (dp) is cheaper than operating a
system where lost sales are never incurred (\/2hd A) (Hadley and Whitin 1963).
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Q* =R*=+/(2dA/h) (6)

If the S* computed from eqn. (4) is positive, the optimal value of R can be determined explicitly
by using (3) to eliminate S in (2). This yields R? = { 2dA(h+pr) — [(1—B)pd]? } /hBm. Thus the
optimal value of R is

R* =+\/(2dA(h + Br) — [(1-B)pd] *)/\/(hBm) (7
(R* = S* from eqns. (2) and (3)) and the optimal order quantity is

Q*=R*—(1-)S* (8)

It is noted from eqn. (7) that when § = 1-(1/pN(24/dn/(h+fr), there exists a real R* satisfy-
ing (7). However, since the right hand side of this inequality is smaller than the right hand side of
eqn. (5), real R* exists whenever S* > 0.

3. Numerical Example and Sensitivity Analysis
It is very easy to demonstrate that inventory systems are sensitive to assumptions regarding

the nature of demand during the stockout period. For example, suppose that an item has the follow-

ing characteristics

d = 200 units/year p = $2/unit lost
h = $3]year m = $1/year per backorder
A = $50/order

When 8 = 0, i.e., unsatisfied demands are all lost, eqn. (5) applies and the problem reduces
to the basic EOQ situation. Thus Q* = R* = 82 units from eqn. (6). This result coincides with
that of Hadley and Whitin (1963). Up to 8 = 0.3876, eqn. (5) still applies.

When § = 0.5, half of the unsatisfied demand will be satisfied from the next shipment. From
eqns. (4), (7), and (8), §* = 64, R* = 141, 0* = 109. From eqn. (1), K(R = 141, 5 = 64,=0.5)
= $232. We see that it is cheaper to order 109 units every cycle and set the reorder point such that
replenishment stock arrives when the cumulative shortage reaches 64 units.

Table 1 shows the optimal operating policies associated with different values of §, fraction
backordered. As the B increases, S* and Q¥ increase but the minimum annual average cost decreases.

] 0 0.3876 0.5 0.9 1
S* 0 0 64 119 122
R* 82 82 141 168 163
o* 82 82 109 156 163
K(R*,S5* f) $245 $245 $232 $147 $122

Table 1. Sensitivity of § (fraction backordered).
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Frequently, inventory managers assume that § =1 even though it does not. That is, they assume
that all demands during the stockout period can be backordered even though this is not strictly true,
To carry this example further, suppose we do this for the above data when the § is actually 0.5.
In this case, the managers would assume erroneously @;* =R * = 163,5,* = 122. The true average
annual cost that would result from using R;* and S;* may be found by substituting R, * and S, *
in eqn. (1) as K(R =163, 8 =122, $=0.5) = $249. Thus, failure to use the appropriate model has
cost management $249—$232 = $17 per year for this single item. The effects of this in a multi-item
inventory may be quite substantial. ,

Figure 2 shows the effect of erroneous assumption of 8 on the average annual cost of operating
the inventory system.

4. Conclusion

This article has treated inventory process in which a fraction p of the demand during the stock-
out period is backordered and the remainder is lost. It is felt that the model represents the real
nature of inventory systems and is useful for the practical solution of inventory problems. Erroneous
assumption of 8, the fraction backordered, appears to be very sensitive to the annual average cost
of operating the inventory system.
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Figure 2. Effect of erroneous assumption of 8 on annual cost.
Appendix
Proof of the convexity of K

K is continuously twice differentiable. When § < 1—(1/pN/(2hA4/d), eqn. (5) holds, and the
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problem degenerates to the basic EOQ model: K/R/ = (2d4 +hR?*)/2R. In this case, the convexity
of K is obvious. When 8> 1—(1/p)\/(2hA[d) or [(1-B)pd]* < 2hd A

92K /oR? = [2dA + hS* + 2(1-B)pdS + fnS*| [R3
82K/aS* = (h + pm)/R
32K/OR aS = —[(h + Br)S+ (1—BJpd] [R>
The determinant of Ks hessian matrix, |H], is
\H| = 3°K/0R?3*K[3S*—(3?K[aR3S)?
={2hd A + 2dApr - [(1-B)pd] *} /R*
>2d Apn/R* >0

Therefore, Ks hessian is positive semi-definite and K is convex.
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