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Abstract

This paper is concerned with the optimal control of dynamic expansion and operation of

a single capacity under deterministic demand.

Three cases of financing mode are conside-

red : unlimited borrowing, debt aversion, and self financing. Using the net revenue as the
objective function, the optimal paths of production and investment are analytically derived.

1 . Introduction

The growth of a firm is dynamic; it cons-
umes resources, generates greater amount
of product after certain lags, and involves
investment decisions for the possible expan-
sions in the future. Hence an importanf cl-
ass of the dynamic theory of the firm is the
problem .of investment and production.

A seminal work on this category is due to
Arrow, Beckman, and Karlin [ 1] who forme
ulated the capacity expansion problem in co-
ntinuous time and obtained optimal capacity
expansion policies, Thompson and George
8] formulated a dynamic modei of the firm
encompassing operations and investments,
and solved the problem by using the Pontry-
agin’s maximum principle, Perrakis and Sa-
hin {73 derived the optimal capacity expa-
nsion path for a monopoly firm in an irreve-
rsible investment situation. They assumed
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that the marginal retums to capacity are al-
ways positive and thereby ruled out the po-
ssibility of firms holding idle capacity, so
any additional revenue generated by its use
means additional profits.

Capacity expansion with the revenue func-
tion which includes idle capacity cost is con-
sidered in this paper. The optimal policies
of investment and operation are derived und-
er various financial cases of unlimited borro-
wing, debt aversion, and self financing by
using the Pontryagin's maximum principle.

2 . Model with Unlimited Borrowing

2.1. Nomenclature
The following notations are used through-
out this paper.
A. Exogenous parameters
¢ = unit capacity purchase price
i = interest rate '
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r = depreciation ratc
M=upper bound on purchase rate of
new capacity
b = dividend payout ratio, 0=b =<1
w= wage rate
m=idle capacity cost rate
B. Conirol variables
u (t } = scale of operation, 0 u(t)<1
v (t ) =capacity purchase rate or inve-
stment rate
L (t) =labor input
C . State variables
¥ {t ) =capacity of firm
Dt }=net debt
R {u(t)X(t), L (1) =revenue function
The revenue function is assumed to be co-
ncave differentiable with continuous first
and second partial derivatives on an open
set contained in the nonnegative orthant, It
will be also assumed that RXI 0, L » -m
and Ry 1 uX,0> w for uX in some open neig-
hborhood of 0.

2.2. Formulation

The objective of the firmis to maximize
the discounted value of net revenue, i e,
revenues from sales less the cost of produc-
tion, investmeni, interest payments, and
cost of idle capacity. The discounted value
of capacity at the end of the finite planning
horizon is added into the objective function
to ensure the continuity of production after
the planning horizon. The model is constr-
ained by two differential equations describ-
ing the changes in capacity and debt, and
there are inequality constraints on controls
and state variables.

Then the capacity expansion model for a
firm with unlimited borrowing financial si-
tuation can be formulated as follows :

Maximize J =/ {Ru ()X (1), L (1) ] -

- wl(t) =D (t) —cv (t)

~-mX {t) (L-u(t)) e ™t dt
+eX (t e it

subject to

X(ty=v(t)-rX(t)
D(t) =iD(t)+wL (t} +cv{t)-R (u
(X (), Lty )-mX (t) (1-
uft))
Zu{t)=1
O0=v (t)£M
where M 18 an arbitrary constant and the
initial conditions X (0) >0, D(0) are assum-
ed to be given.
To apply the Pontryagin's maximum pri-
nciple, the Hamiltonian can be defined by
H= 1, (R-wL-iD-cv-mX (1-u)Je it 4+P,
(v-rX}+P,(iD+wL+cv +mX {i-u)-
R)+ 2ju+ 2 (1-u)+ 2av+ ,{M~v)
G = - 2,cX (t e it
where i and P are Lagrange multipliers
and adjoint variables, respectively, and 1,
=1,
Then the necessary and transversality co-
nditions become
H =X(R:+m) (e R -P)+ 4,-2,=0 (1)

Ho =(R..—w) (e € -P,) =0 @
Hy =c(Pz-e™10) +Pi+ 25~ 4=0 (3)
P (t,) =ce it

Po(t.)=0 _ )
Py =Py + (m-(m+R Ju)(e-P,) (5
P, =ile it P, (6)
A=25(1-0)= 239 = 2(M-v) =0,

iz 0 fori=1, - d @

and v maximizes H at every point within the
space defined by the two linear constraints.
Since both of the multipliers i; and 1, can-
not be positive, it can be easily shown from
the equation {3} that

v=0  if Pi=c(et-P, (®)
v=M if Py = c(e™1t -p,) 19}
0SvEM if P=c(et-P,) o

It can also be shown that the multiplier P,
is negative, i e,

e it_p, >0 11
since the integration of the appropriate dyn-
amic equation with P;(t,)=0 yields P,=-ie
"1t (t,-t). The positivity of eIt -P, imp-
lies in both cases that along the optimal pa-
th, Ri=w.



Similarly, since both of i; and i, cannot
be positive,

e=1 if Re(uX,L)>-mand 1,50 (12}

o0¢u<1l if R«(uX,L)=-mand ;= 4,

=0 {13}
and along the optimal path, uX is always po-
sitive.

The equation Re=w contains the variables
uX and L only. If there is a unique solution
L=L (uX), then the control variable L is
completely determined as a function of u
and X.

Proposition 1, Let L {uX) be the (unique}
solution of the equation Ry=w>0. Then
the function R-wL +muX of the variable
uX is positive, concave and differentiable
on some non-—empty open interval (0, ¢).

Proof. The concavity of R and the condi-
tion Ri(uX, 0) > w guarantees the positivity
of L (uX) for uX in some open neighborhood
of 0,

Since the second partial derivative of R
with respect to L satisfies that Ry (uX, L)
{0 for all uX and L on the nonnegative or-
thant, it foilows that for uX in some open
interval (0, ¢, Ruw (uX, L (uX}) <0.

Since Ry, and R.x exist and are continu-
ous, it follows that L (uX) is continous and
L: =dL (uX}/d (uX) exists and continuous
within the interval.

To prove concavity it is sufficient to show
that for any uX and uX on (0, 1},

R (uX, L (uX)) -wL (uX) + muX - R (uX, (ux))

+wL (0X) ~muX < {d/d (uX) {(R(uX, L

(1K) -wL (uX) +muX}) [uX -uX)={Rx+

Ry Lx-wLx+m) [uX—E)?]

= (Rx+m) (uX-uX)

‘Then the inequality becomes

R (uX, L {uX))-R{uX, L (uX})< (Rx +m)

(uX-uX)+w (L (uX) -L (uX)-m (uX-uX)

Finally, define N (uX)=R (uX, L{uX)) -
wl (uX) + muX, then Nx=Rx+m)> 0at uX=
0, where Nx and Rx denote to the partial
derivatives with respect to uX. Hence, N
(uX) is positive on some nonempty subinte-

rval (0, ¢) of (0, e). QE D,

The necessary conditions can now be refo-
rmulated in terms of N by substituting N,
Nx and O instead of R-wL4+muX, Rx+m,
and Ry ~w.

2.3. Optimal Path
From the equations (12} and {13}, and
the concavity of N, it follows that the opti-
mal operating or production policies, u} are
u* =1 if Nx > 0 or 0<{u*<1if Ny =0,
if N/uX) is strictly concave, then the eq-
vation Nx=0 gives an unique point uX =X
Set K= inf {uX, Nx=0} then the optimal po-
lices can be given by
u* =%/ X for X>% and u*=1 for X=X,
In order to determine the optimal investm-
ent policies, the following cases can be con-
sidered .
A. Cese of X ) (X
For all the paths with the initial capacity
smaller than X
Py=eft (C-ft (Nx=m)(1+i(t,~T))e (it
r}TdT}
from the equations {4) and {5}, and if X (t)
<X,
C=ce Ut b4 Pr(Ne-m) (1+i (t:-T)
e+ T
Py=eft (ce ~(HT) tid [(Nx-m) (L+1 (s~
Tye GO TgT,
Cases (8), (9) and (10) hold respectively if
Py<-ce it (1+i(ty- )
or
M Nx-m-c (i+r) +ei/ Q+i(t,-T 1 (1+
i(t,-Te G+DTaTS 0 (14)
For te[0,t,)
c(i+r)+ei/ {1+i{t1-t)) elc (i+r}
+ci/ (1+itq), 2¢i+er] (15}
where for large t;, the interval becomes (c
{i+r), 2ci+crl.
Then, the optimal investment policy is
v*=0 for all t if Najsmy <C(itT)+el/
(1+it}+m
v¥*=M for all t ifxliglooNx >2c+er+m
To find the paths X (t), it is necessary to
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restrict the form of N. Suppose

Nxix=o >2ci+cr+m {16)
and

limNx {c (i+r)+ci/{l+ity) +m (17)
X—C0 .

then it is possible to find two points X,{0)
and X;(t,), such that 0< X,(t;) < X4(0) <&
with

Nx k=x; (t,;} =2citcr+m

Nx JR=Xi(0) = c{i+r) +ei/ (1+ity) +m

Suppose, in addition, that the depreciati.
on rate satisfies

1> ~X/X=~ci?/ (1+i(t;-t))*Nxx
for all X«{X,(t;)X,(0)], then it is possible
to find a capacity X, (t) satisfying the equ-
ation

=c(i+r)+ci/ {1+1i(t; -t)+m for all

te(0,t] and r> -X,/X,.
With these restrictions, the optimal inve
stmeént policy can be given as follows :

a) If X(0) <X(0}, then v*=M for
the time interval [0, t'3, If M/r+ (X (0) -
M/1)e M1 X, (t,) then t'=t,: otherwise
t' is determined by the equation M/r+ (X
(0) -M/r)e ™ '=X,(t'). For telt,t, ],
v=X,+1X, which implies that for this int-
erval the equality sign will hold in (14).

by If X,(0) <X (0} L X for telQ tj ],
then v¥*=0 and t; is determined from X (0)
e Tti=X, (tj); if no such t; exists then tj_
ti For te(t;,t:), v*=X1+rX.1.

o) If X(0}=X.(0), v¥*=X, +rX, for
te [0, t;).

B. Case of X (0) )X
If-the initial capacity is greater than ﬁ' i
e, X(0) X, then (13) and (5)imply
Plzert{(Hrrn,i';l (1+i(t;~-Tye- U+ T

dT)
for all the path with X >,
I X (t) YR
C=ce =i+t _m 4 (14 (6, - Ty e~ (40T
dT.

So the following inequality is satisfied
Jr(-m-c(+r)-ci/ {1+i(t,-T)} {1+i
(t:-T)ye~ U+ TYT ¢ o,

Hence, the optimal policy is v*=0.

Proposition 2. If X (0) >& and X (t,) <ﬁ‘,
(8) still holds for te (0,t') where t' satisfies
X (0)e Tt =%

Proof. 1t follows that

C=Pi(t)e™™ ~mf1 (1+i(t,-T)e (10T

dT
Pi(t)<ce ' (14i(t,-t)
C< ce~litn)t! (1+i(t;-t ))-m.."” (1+ (ty~
The-(i+r) TdT
<ce~ U0t (14 (¢,-1)) ~-m S (1+i(t,
-The™ i +r)TdT
Hence,
Pr{t)=e™ (Pi(t)e ™™ -mf "(14i (t,~T))
e={i+r) TdT
+m [’ (14 (t,-T)e - H+DTaT)
Zelt (ce ~UFDT (14 (£,-1))
~mf,’ (1+i(t,-T)) e~ {i+1) Tgr
+m Sy (1+i (t-T))e~{i+0) Tar)
=ce M (1+i(t,-t)). Q E. D.

If X (ty) <X, then v*=0 for some t'e (0t
with t' satisfying X (0)e ™t'=%, and for te
{tt; ) where t; is determined from Re —x(ts
1) =X1(tj). If there doesn't exist sucht
then tj=t1. Also for ts(t],tx) v -—X1 +1'X1

2.4. Economic Interpretation

For the unlimited borrowing financial case,
the firm should invest maximum as much as
possible whenever the marginal revenue of
capacity Rx is greater than the economic re-
nt, c{i+r)+eci/A+i(t,~t}], where the se-
cond term represents the borrowing rent. The
firm should not invest whenever the opposi-
te is the case. If the marginal revenue is
the same as the economic rent at time t, th-
en the firm will invest singular amout to na-
intain this equality from time t to the end
of the planning horizon,

For the optimum production policies, the.
firm should operate at full capacity whenev-
er the marginal revenue of capacity plus ex
cess capacity cost is positive. If it is equal
to zero, the production level is determined



by the ratio of ¥to X.

It turns out that the direction of the opti-
mal policies is a function of the capacity. It
should be noted that the assumptions of re-
venue function must be relaxed if idle capa-
city cost is allowed.

3 . Model with Debt Aversion

If a firm does not borrow at all but lend to
others, D (t) can not be positive and the ma-
ximum investment should be the total mon-
ey available to the firm without any debt .,
Thererore, the constraints which should be
added to the previous unlimited borrowing
case are as follows :

0 <v<R-wL-iD-mX(1-u) /¢
b <o
D=0
Xon=0
D=0
The corresponding Hamiltonians are
H= (R-wL-iD-cv-mX (1-u}Je"it + p,
{(v-1X)+P,; (iD+wL+cv+mX (1-u)
“R)+ 21u+2,00-u) +23v+ 2, ((R -
wL-iD-mX (1-u)) /¢ -v)

G=-¢cX{ tl)eitl

Then the necessary and transversahty co-
ns are

H.=X (Rx+m) (e™® -P,-2,) + -2,

=0 _ (19)
He = (Ro-w) (e *-P,+ 29=0 (20)
Pi(ty) =ceitt  Py(t)=0 (21)
Pi=Pyx +{m-(m+Re)u) (e7t-P,+ 2,)

(22)

Py =-iP, +ieTit+i 2, (23)

A=2{1-1u)=2.v=2L(R-wL-cv-mX
(1-u})=0, 2:=0 i=1, -, 4 (24)

and the optimal investment v* satisfies

(v¥-v} (Pr+2s-c (et =P, +1,)150 (25
for all v's satisfying (R-wL-iD-mX(l-u))
fezvz=z0.

It can be easily shown that the muitiplie-
ts P,is negative, ie,e P, Y0 and

Po= —ie it (1) —ie it 1 4TAT  (26)

From 2,20 and the positivity of e7it -p,,

R.=w along the optimal path,

Thus the optimal investment policies are
v*=0if P, +2;,Sc (e it -p,) (27
OZv*<(N-iD-mX)/c if Py + 25 =c (eit

P+ 1 (28)
={N-iD-mX)} /c if P;=c (e7it-p, + 1,

(29}

Under the conditions (16}, (17), (18)and
the strict concavity of N (X) for Xe [(X,(ty,

X,{0} ), the optimal investment policies are

the same as the unlimited - borrowing case

for X (0)=X;(0), For X0 {X,{0), the
optimum policies can be derived as,
*=maximum if X(t) { X,(t}
*=0 ifX(t))Xl(t)
V=X X i X(t) =X,(t)

4. Model with Self Financing

A particular case of debt aversion model
is self financing situation, i e, a firm do-
€s not borrow and it can invest only the
net revenue which is the gross revenue min-
us dividend. Then the model can be formu-
lated as follows :

Maximize J=/" (R (uX, L) -wL - cv -mX
(A -u))eitdt +cX (t,)elh
subject to
X =v-1X
0 Sv=(b/c) (R(uX, L) -wL-mX {}-u))
0 Zugl

Then the Hamiltonian, and the NECesSary
and transversality conditions are

H=(R-wL -cv-mX (1-u)} et +P,(v-

rX) + 2+ A ~u) + 2,v+ 2, (b /e (R-
wL-mX (I-u))—v)
Ho=X (Rx+m) (e7%+ 2, b/c)+ 11 2,=0

_ (30)
He = (Ru-w) (eM4bjcay) =0 {31)
H. ="P1“Ce_it+ls"24=0 (32)
Py(t;) =cemits (33)
Py =P+ (m-(m+Rs)u)e Tt 4+b/ca,)
=9 (34)

A=2s (-u) =29 =2,(b/c [R(uX, L)-wL
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-mX (1-u) }-v) =0 (35}

i 30, i=hee 4
Using the previous result that R, =w and
uX is positive along the optimal path, the
problem can be simplified by substituting
the optimal value L (uX) instead of L and
solving the problem with respect to two co-
ntrol variables.

Similar to the previous models, the opti-
mum investment policies can be derived as
foliows :

A, When X{0) <X

v¥*=0 if Nxlzx—e {m+c(i+r)
v¥*=M if lim Nx>m+c(i+1)
X0

For unsaturated solution, it is also necess-
ary to restrict the form of N.

Suppose,

Nx|x=o ymte(i+r) {36)
and

limNx {m+c{itr) (37)

X— 00

then it is possible to find the point X, from
Nx | x= x, (t) =¢(i-+r}+m. Suppose, in ad-
dition, that N is concave and r) 0 for X=X,
; then it is possible to find a capacity that

is a continuous function X,(t)=X, satisfy.

ing the equation Nx=m+c(i+r) for all te
(0, t;) and r=-X,/X, =0 With these re-
strictions the optimal investment policy is :

a) When X{0)=X,{(X,. The policy
is v*=M for the time interval (0, t"), If
M/r+(Xo-M/r}e TH1<X, then t"=t, ot
herwise t" is determined by the equation
M/f+ (Xo-M/r)e T '=X,. v*=rX, for te
(t", tyJ.

b) When X, <X (0)<X. For t[0,t"),
v*=0and t" is determined from X (v) e rt"
=Xz: If no such t" exists then t"=t, For
te (t), t1], v¥=rX,.

¢) When X(0)=X,. v*=rX, for ali
tel0, t,]

B. When X (0) )X

v¥=0 if X{t,) X

¥ X (t,) <X then for some t"¢ (0, t,), X
(0)e ™" =X and Xe T =X, from which

~ 66

t, is determined. If no such t; exists then
t:=t; and v*=0 for t"« (0, t,). If sucht,
exists, then for te(t,, t;], v*= X, .
Choosing b (N-mX) /c instead of M, sim-
ilar results of previous models can be obta-
ined for each cases of X (0)>X, and X(0)
{X,.
Thus the optimal policy turns out to be
relatively simple in both cases,
v*= maximum if X (t) (X,
v¥=0 if X(t)>X,
v*=rX, if X(t)=X,

5. Conclusion

For the simple but diametrically opposite
financial cases considered in this paper, it
turns out that the direction of the optimal
policies of investment and operation is a fu-
nction of the capacity even though the opt-
imal paths are different in general.

The optimal expansion path has the follo-
wing properties ; the firm should invest ma-
Ximum in new capacity whenever the margi-
nal revenue of capacity is greater than the
economic rent, and it will not invest whene-
ver the opposite is the case. If the margin-
al revenue of capacity is the same as the ec-
onomic Tent, then singular purchase rate is
maintained

The optimum paths are crucially influenc-
ed by the financing mode and idle capacity.
The financing mode determines the maxim-
um available capital that the firm can expe-
nd while the idle capacity alters the margin-
al revenue of capacity.

Models with general financing conditions,
oligopolistic competition, and various regul-
ations can be the areas for further study.
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