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ABSTRACT

Suppose a system with m components is subjected to a random stress. We consider the estimation of reliability when

data consist of random samples from the stress distribution and the strength distributions. All the distributions are

assumed to be independent exponential with unknown scale parameters. An explicit form of system reliability and the

minimun variance unbiased estimator are obtained. The asymptotic distribution is also obtained by expanding the

minimum variance unbiased estimator about the maximum likelihood estimator and establishing their equivalance. The

performance of the two estimators is compared by Monte Carlo Simulation.

1. INTRODUCTION

Suppose that a system consisting of m components .
functions if at least k(1= k=<m) components simultaneous-
ly operate. The system is subjected to a stress Y which
is a random variable with continuous cumulative distri -
.y Xy of the

components are independent random variables with con-

bution function {cdf)G. The strengths X, .
tinuous cdf's Fi,... , Fa, respectively. Then the system
reliability. which is the probability that the system does

not fail, 1s given by

Re n=P, (kor more of X"+, Xn>Y)
= £ P (ol Xy Xa>Y)
= gx 5 /" -:. (1~ F., (x))‘ﬁlFm(x) dG (T)

(1-1)

Here the sum X is taken over all(?}distinct combinations
o i

of the integers{1,2,..., m} such that exactly j of the X
are greater than Y and the remaining X;, are less than
or equal to Y. The particular cases k=1 and A=m cor-
respond, respectively, to parallel and series system.

It is assumed that F,,* * * Fa and G are exponential
distributions with unknown scale parameters and that
independent random samples Xu,..., Xin, ..., Xmis...
Xan, and Yi,..., ., Fn and G,

respectively. Strong points in favor of this setting are

Y, available from F, ..

well explained in (1).
Under these assumptions, we obtain the minimum vari

ance unbiased estimator (MVUE) of the system reliabili-
ty Rr= given in (1.1). This result can be readily applied
to all distributions (F}, ..

., Fpn, G)having a  structural

relation of the form
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(I_FI)HB': R (l—Fm)llﬂn
—(1—G)'oe

= (1'—Fo)

where F» is a known distribution, and 8,,..., 8, and 6,
are unknown parameters. With an initial transformation

of the data as

3

Xf=—-]og[1-Fo(X,)], i=1, -

Yy =—log (1 —F, (Y))

the problem can then be reduced to one of exponential dis-

tributions. For example. Weibull distributions with the
same known shape parameter are included in this formul-
ation.

This problem is an extension to nonidentical multicom-
ponent systems of the stress-strength model whose
identical component version has been considered by
Bhattacharyya and Johnson (1).

2. MVUE of Ry, n

We first derive an explicit expression for the system
'Fm: G)

belonging to the class of exponential distributions. Supp-

reliability Rx.» introduced in (1.1)for (Fy,- *

ose that
F, (x)= l——exp(-—ﬁix)Y i==1, -eereeene ,m
G(x)=1—exp (—f,x), 0< X<

where allof @, - -+ ,8, and 6 are unknown. Then

PT (j Of Xlt. " .7Xm> y)

oo

=z [0 i a-F. (@) I Fo () dG)

oo =1

=3 ) foexp(— b, .I‘-“_.IZ' By, %)

i JO

2

(1—exp(— b, %)) dX

¢

m
witl

i
- 2( t—t—j) (-1 mEY ngot

b= Qi1 @z=a5td

6,/ (6t 5 0,,)
i1 (2.1)

From now, the abbreviated notation x . will be used
ag o

in place of
m—-i+1 m-14+2 m
P P P

ay=1 az=ai+l ag=a,. +1

Hence
Rk'm= %ﬁ: zs: (——l)t_J ( t_t-] ) z [ ; t ]
=k t=y a o at 00+ ) Ba.-
_ L T I A | - 8,
- ::x;go ( l)t ’ ( > alz.“--.ﬂ'l [90+ zz: 8, ]
i1 '
=3c. = ¢ 2-2)
= aieaat
_ k-1 t i
h = (— 1 4 —
where  C,= (—1) Eo <J) =1,

po=——
G+ X 6.,

i

Let T,= )':7: Y, and T,= ¥ X, i=1--,m,
J= j=1

then the following theorem holds.

Theorem 2.1. The MVUE
reliability Ry, is given by

Ia,,,. of the system

—~— m i
Run= £,C, 2, (DR 0= Ro )

(1—Rew) ™ * dw (2-3)
where . T*
R,= T,
T*

Rﬂi:Ta' =1, -,

£

T*=min {Ts, Ta,," "

Proof : We first consider the MVUE of the

parametric function

for a given choice of {av," * - ,a}. A trivial
unbiased estimator of ¢, is given by
Ga (an' v Xni» Yl)zl(xat‘>yls oy XG:I>Y|)



Since To=(To, Ta,» -- -+ T,.) is a complete suffi-
cient statistic, the unique MVUE ¢, of ¢, is

the conditional expectation

a‘azE[ga(Xln' v
:Pr[Xa|l>Yl,'

‘Xmlv Yl) \Zﬂ]
nt ,Xa'!I>YI|Ip]

Writing W0=—X‘T—, Wa,—_——&%“— and
0 ai
Va‘.Z%, i=1,"-> .t , we have
$a=Pr[Wa.>Va.Wo,"‘ 'Wat>

Vo Wy | To)

We know that the random variables W,, W,, ,--
s W,, are mutually independent and that the dis-
tribution of W, is beta (1, n,—1) for i=0,
@, ay .

Furthegmore (W,, W,,, ' -+ »Ws.) is inde-

pendent of T,. Thus

~ 1t ‘ ne -
Go= I O=min(l, Va,w))nes!
(ne—1) (1—w)""* dw

1

!
Z(no_l)Ro 1{11 (1‘Raiw)"m’1

0

(1—Rw)™* dw. 2-4)

Substitution of (2.4)in the linear function (2.2) completes

the proof.

For small sample sizes of o, Th» ... . Nm, the equation
(2.3) can be easily reduced to a finite sum. The computa-
tion of Ek_,,. can also be accomplished through the
numerical integration for moderate sample sizes. How-
ever. for large sample sizes, the computation would  be
quite labourious and one would look for a reasonable
approximation. The asymptotic distribution of Ek. m IS
investigated in Section 3, where it is shown that, for
Jarge sample sizes, the MVUE can be approximated po -

intwise by the maximum likelihood estimator (MLE),

which is easier to compute. We also obtain a first-order

_correction term for the bias of the MLE.

3. ASYMPTOTIC DISTRIBUTION

Due to the complexity of the expression (2.3),itis very
difficult to derive the limiting distribution of Ek,,,, dire-
ctly from the expression. To circumvent this difficulty,
we consider the asymptotic properties of MLE of Ry.a
and then establish its asymptotic equivalence with I.'Ek.m
In this process, we also obtain a first-order correction
term for removal of bias of the MLE.

We denote ﬁ;?'m for the MVUE given in (2.3) and
k,:'f’,,, for the MLE of Rx.» where n=n, + g n, is the
combined sample size. The MLE of (4,, 4, H 8,) is
given by

=
f
=

-

i=1,---,m

By the invariance property of MLE and the expression
{2.),

A(r:mm"" E C, Z R T 0“‘ —
Srtee (ot 54,
=% G, 2, " (3-1)

The limiting distribution of the MLE is given in the
following theorem. where L denotes the convergence in
distribution.

LN,

Theorem 3. 1. Let n—+c such that

0<r,; <1, for i=0,1,---,m. Then

In (R —Rem) L N(O, & )
__ai »_a;
where ok m T 02 + E, r, 6°
i (£ 6..)
apy = Z Ct Z ljll
ek avmae (g X 0,,)"
a=3%3¢C = ‘9':7, ’
[ ""”71[50‘"0,‘*" ; gm]?
J=1,-,m



is the summation over all

(Here, ¥

Q. ay-
possible choice o, < - <a,, from {1, --,m}
except J.)

Proof. It is well known that

— L
=Ly 2 N, e, i=01m.

8, 6.
Since Ry n is a function of 6,, 8,,-++ 8, with

continuous first partial derivatives, the theorem
follows from (6a. 2.6), page 387 of Rao (2). To derive
an asymptotic distribution of MVUE, we first note that

Rra=35C, 3 ¢ ROu=2 C,
g t= &

Lok a a

Ep G2

Since the coefficient C, are fixed constant irre-
spective of the sample size, it suffices to inves-
tigale the relation between ¢, and @, as n — o

and for a given cloice of {a,,a,}
~ . 0 n. .
Theorem 3.2. Let n—o0 such that ’7‘1‘ =T,

0<r, <1 for {=0,1,---,m, then we have

with probability 1, :

B = b =B 4oy (3-3)

where

L Ng, My, & LN,
[ Tpe— y_raq 2__ ko pid S
By = (XmV, )t =2 (2 V,,) (ZSaev,)

|

)z Vet i |

n -1 n
n LA (P -3
.|l 3 Loy
\n+iln o

Proof : We consider first the two leading terms in an
asymptotic expansion of the integral (2.1). Then

l—w
<3‘1 Rai+2Rﬂ>

’Tmﬂib&)g RO L_ZLQ
© o np. nlB. om B4
(SBeupy, 40 gy ) )
e MR RR) Loy

L
where /)’,,Z%(TLQR.,-{- 2 naRa,). Recognizing

that ¢’ = Te % and simplifying the expansion,
n n

we obtain the result (3. 3).

Letting B,= E c, ¥ BJF,
=k LIRON 73

a

we have from (3.2) and (3. 3),
~” —_ o ny __'1_. i
R(h,)m—R(k.m an+O€n> (3.4)

By the strong law of large numbers, B, conver-
ges to a finite constant and, hence,

n (R —RE.) = 0, almost surely.

Thus the asymptotic distribution stated in Theo-

rem 3.1 for k,{,",,, also holds for Ry, . Since

E,:f’,, is unbiased for R, .. the term 1 B, in
n

(3. 4) provides an estimate of the first-order

correction term for bias in the MLE.

4. EMPIRICAL COMPARISON WITH MLE

Since the exact distributions of the MVUE and the
MLE given in (2.3) and (3.1) are very difficult to obtain
analytically, we investigate their relative performance
in a moderate sample size n,=n, = =, =2
through Monte Carlo simulation. Estimates of the mean
squared error(MSE) and the bias were obtained from
2.500 trials for one-out-of-three and two-out-of-four
systems with various sets of parameters. From these,
the value of Ry » was obtained using (2.3)and the value
of Rk,u from (3.1). The true value of Rxn was compu-
ted from (2.1).

The results are listed in the table. Although Ek_ m IS
known to be unbiased, its estimated bias is recorded as
a check on the computation. The estimated bias of
MVUE is found to be much smaller in magnitude than
that of MLE except for the case &= 0,=+---+- =Om. Al-
though the MLE is biased, it is apparent that the magni-
tude of (biss)2 is negligible relative the MSE in all cases
included in the study. Furthermore, the MSE  of both

estimators appear to be nearly equal.
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Estimates of bias and MSE; n,=n,='+-=n,=20

bias MSE
(k, m) (G By " * 20n) Ry,
MVUE MLE MVUE MLE
1,1,1,1) 0.75 0. 00243 0. 00235 0. 00487 0.00454
3,2,1,1) 0. 9286 —0. 00608 —0. 01008 0.00102 0.00108
(1, 3) 4,2,2,1) 0.9349 —0.00723 —0. 01110 0.00121 0.00128
5,3,2,1) 0. 9466 —0. 00072 —0. 00428 0. 00062 0. 00066
8,4,2,1) 0.9748 0. 00096 —0. 00239 0. 00020 0. 00022
1,1,1,1,1) 0.6 —(0. 00341 —(. 00332 0.00713 0.00677
3,2,1,1,1) 0. 8536 —0. 00099 —(0. 00666 0.00207 0.00208
2, 4) 5,3,2,1,1) 0.8961 —0. 00347 —0. 00896 0.00163 0.00171
8.4,3,2,1) 0.9121 —0.00317 —0. 00835 0.00171 0.00179
J (16,8,4,2,1) 0.9599 0.00148 —(. 00214 0. 00034 0.00038
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