CONVERGENCES OF GAMES BETTER WITH TIME

By Baek In-Soo and Hong Duk-Hun

1. Introduction

L.H. Blake [1, 2] introduced the concept of games fairer with time and established a fundamental L_1 convergence theorem.

A. Mucci [3, 4] introduced the notion of martingales in the limit and proved an a.e. convergence for L_1 bounded martingales in the limit, these processes are a special case of games fairer with time.

Recently Blake [5] again defined new concept of weak submartingales in the limit and it was proved that a uniformly integrable weak submartingale in the limit has an L_1 limit.

The purpose of this paper is to introduce a notion of games better with time which is a generalization of both games fairer with time and weak submartingales in the limit. We also obtain L_1 convergence theorem and a.e. convergence on atomic set.

2. Convergence theorem

Throughout this paper, let (Ω, \mathcal{F}, P) be a probability space and $(\mathcal{F}_n)_{n=1}$ an increasing sequence of sub- σ -fields of \mathcal{F} and $(X_n)_{n=1}$ be a sequence of random variables adapted to $(\mathcal{F}_n)_{n=1}$.

A stopping time is a random variable τ assuming positive integer values and the value $+\infty$, such that $\{\tau=n\}\in\mathscr{F}_n$ for each n.

DEFINITION [2]. $(X_n)_{n=1}$ is a game fairer with time if for every $\varepsilon > 0$ $P(|E[X_n|\mathscr{F}_m] - X_m| > -\varepsilon) \longrightarrow 0$ as $n, m \longrightarrow \infty$ with n > m.

DEFINITION [5]. $(X_n)_{n=1}$ is a weak submartingale in the limit if, for every $\varepsilon > 0$, there exist M such that for n > m > M

$$P(E[X_n|\mathcal{F}_m] - X_m \ge 0) \ge 1 - \varepsilon$$
.

DEFINITION 1. $(X_n)_{n=1}$ is called a game better with time if for every $\varepsilon > 0$, there exist M such that for any n > m > M

$$P(E[X_n|\mathcal{F}_m] - X_m \ge -\varepsilon) \ge 1 - \varepsilon.$$

We easily can find an example of a game better with time which is neither a game fairer with time nor a weak submartingale in the limit.

First we will show the L_1 convergence theorem.

THEOREM 2. If $(X_n)_{n=1}$ is a uniformly integrable game better with time, then $(X_n)_{n=1}$ has an L_1 limit.

Before the proof is presented, the following two lemmas are necessary.

We omit the proofs of the two lemmas.

LEMMA 3. If a sequence $\{a_n\}_{n=1}$ of real numbers is bounded with the property that for every $\varepsilon > 0$ there exists a positive integer M such that whenever p > q > M $a_p - a_q > -\varepsilon$, then the sequence $\{a_n\}_{n=1}$ has a limit.

LEMMA 4. If $(X_n)_{n=1}$ is a uniformly integrable game better with time, then for every $\varepsilon > 0$ there exists a positive integer M such that whenever p > q > M

where

and $\{\int_A X_p\}_{p\geq n}$ is bounded for each $A\in \mathcal{F}_n$ for every n.

PROOF. Define a sequence of signed measures $\{\mu_n\}_{n=1}$ where μ_n is defined on \mathscr{F}_n by

$$\mu_n(A) = \int_A X_n dP$$
, $A \in \mathcal{F}_{n^*}$

For each $A \in \mathcal{F}_n$, $\lim_{\substack{p \to \infty \\ b > n}} \mu_p(A)$ exists. Indeed, consider for any $\epsilon > 0$

$$\mu_{p}(A) - \mu_{q}(A) \! \geq \! \mu_{p}\! \left(A \cap \left[B_{p, \ q}\! \left(\frac{\varepsilon}{2}\right)\right]^{\mathcal{C}}\right) - \mu_{q}\! \left(A \cap \left[B_{p, \ q}\! \left(\frac{\varepsilon}{2}\right)\right]^{\mathcal{C}}\right) - \frac{\varepsilon}{2}$$

for all p, q for which $A \in \mathcal{F}_n$ with p > q > n. By Lemma 3 & 4, the sequence $\{\mu_p(A)\}$ of reals converges. Hence, let $\nu_n(A) \equiv \lim_{\substack{p \to \infty \\ p \geq n}} \mu_p(A)$ for every $A \in \mathcal{F}_{n^*}$

Since $(X_n)_{n=1}$ is a uniformly integrable sequence

$$|\nu_n(A)| < \infty$$
 for all $A \in \mathcal{F}_n$

and so ν_n is a signed measure on \mathcal{F}_n by Vital-Hahn-Saks theorem.

It is clear that $\nu_n \langle \langle P \text{ for each } n, \text{ and so there exists a sequence } (Y_n)_{n=1}$

which is a martingale and $\nu_n(A) = \int_A Y_n dP$ for all $A \in \mathcal{F}_{n^*}$. It is important to note that $(Y_n)_{n=1}$ is a uniformly integrable sequence. This follows exactly as in [6:p590]. Hence, $(Y_n)_{n=1}$ converges in the L_1 norm.

The proof will be completed by showing that

$$\int |X_m - Y_m| \longrightarrow 0$$
 as $n \longrightarrow \infty$.

To this end, write

$$\int |X_m - Y_m| = \int_{C_m} (X_m - Y_m) + \int_{C_m} c(Y_m - X_m),$$
 and
$$\int X_m - \int Y_m = \int_{C_m} (X_m - Y_m) + \int_{C_m} c(X_m - Y_m),$$
 where
$$C_m \equiv \{X_m - Y_m \ge 0\}.$$
 Clearly
$$\int (X_m - Y_m) \longrightarrow 0 \text{ as } m \longrightarrow \infty.$$

Hence the proof will be completed by showing that

$$\begin{split} &\int_{C_m} (X_m - Y_m) \longrightarrow 0 \text{ as } m \longrightarrow \infty, \\ &0 \leq \int_{C_m} (X_m - Y_m) = \int_{C_m \cap B_{n,m} \left(\frac{\varepsilon}{2}\right)} (X_m - Y_m) + \int_{C_m \cap \left[B_{n,m} \left(\frac{\varepsilon}{2}\right)\right]} (X_m - Y_m) \\ &\leq \int_{C_m \cap B_{n,m} \left(\frac{\varepsilon}{2}\right)} (X_n - Y_n) + \int_{C_m \cap \left[B_{n,m} \left(\frac{\varepsilon}{2}\right)\right]} (X_m - Y_m) + \frac{\varepsilon}{2} \\ &\leq \int_{C_n} (X_n - Y_n) + \int_{C_m \cap \left[B_{n,m} \left(\frac{\varepsilon}{2}\right)\right]} (X_m - Y_m) + \frac{\varepsilon}{2} \quad \text{where } n > m. \end{split}$$

It follows from Lemma 3 & 4 that $\lim_{m\to\infty} \int_{C_m} (X_m - Y_m)$ exists.

Thus, we should show that this limit is zero.

Suppose not: that is, there exists some $\gamma > 0$ and M_{γ} such that for all $m > M_{\gamma}$

$$\int_{C_m} (X_m - Y_m) > \gamma.$$

Consider

$$\begin{split} &\int_{C_m} X_m \leq \int_{C_m \cap B_{m+k, m}} \left(\frac{r}{4}\right)^{X_{m+k}} + \int_{C_m \cap \left[B_{m+k, m}\left(\frac{r}{4}\right)\right]^c X_m} + \frac{r}{4} \\ &\leq \int_{C_m \cap B_{m+k, m}} \left(\frac{r}{4}\right)^{X_{m+k}} - \int_{C_m \cap \left[B_{m+k, m}\left(\frac{r}{4}\right)\right]^c X_m} + \frac{r}{4} + \frac{r}{4} \\ &\leq \int_{C_m \cap B_{m+k, m}} \left(\frac{r}{4}\right)^{X_{m+k}} - \int_{C_m \cap \left[B_{m+k, m}\left(\frac{r}{4}\right)\right]^c X_{m+k}} + \frac{r}{4} + \frac{r}{4} \\ &\leq \int_{C_m \cap B_{m+k, m}} \left(\frac{r}{4}\right)^{X_{m+k}} + \int_{C_m \cap \left[B_{m+k, m}\left(\frac{r}{4}\right)\right]^c X_{m+k}} + \frac{r}{4} + \frac{r}{4} + \frac{r}{4} - \int_{C_m} X_{m+k} + \frac{3}{4} r \\ \end{split}$$

for all $m > \max[M_{\gamma}, N]$, where M in Lemma 5 is replaced by N when we substitute $\frac{\gamma}{2}$ for ε .

Thus for all $k \ge 1$ and $m > \max [M_{\gamma}, N]$

$$\gamma < \int_{C_n} (X_m - Y_m) \le \cdots \le \int_{C_n} X_{m+k} - \int_{C_n} Y_m + \frac{3}{4} \gamma.$$

A contradiction arises as $k\to\infty$. So, $\lim_{m\to\infty}\int_{C_m}(X_m-Y_m)=0$ and the theorem is proved.

Secondarily we obtain a.e. convergence theorem for games better with time on atomic set.

DEFINITION [7]. Let F be a family of real-valued measurable functions $f: \Omega \longrightarrow R$ defined on a probability space (Ω, \mathcal{F}, P) . Let g be a measurable function such that

- a) $g \le f$ a.e. for all $f \in F$,
- b) if h is a measurable function such that $h \le f$ a.e. for all $f \in F$, then $h \le g$ a.e.

This function g, which is the greatest lower bound of the family F in the sense of a.e. inequality is denote by ess $\inf(F)$.

The following two lemmas are necessary for proving the theorem.

LEMMA 5. If $(X_n)_{n=1}$ is a game better with time, A is an atom of \mathscr{F} , $A_n = ess \inf \{B | B \in \mathscr{F}_n, A \subset B\}$ and $\limsup X = a > b = \liminf X$ on A, where $a, b \in R \cup \{\infty, -\infty\}$, then for every $t \in N$ there exist m such that t < m and $A_m \subseteq A_t$.

PROOF. Assume for every $k \ge t$ $A_k = A_{k+1}$, put $P(A) = \alpha$ and $a - b = \beta$, We first prove the lemma in the case of $\beta < \infty$. Let $\varepsilon > 0$ such that $0 < \varepsilon < \min \left\{ \alpha, \frac{1}{2} \beta \right\}$. By definition of a game better with time, there exists M such that $t \le M$ and $P(E[X_n | \mathcal{F}_m] - X_m > -\varepsilon) \ge 1 - \varepsilon$ for every n, m with n > m > M. Since $P(A) > \varepsilon$ and $E[X_n | \mathcal{F}_m] - X_n$ is constant on A_t for any n > m > M > t we have $E[X_n | \mathcal{F}_m] - X_m > -\varepsilon$ on A.

On the other hand, there exist $n_1, n_2 > M$ such that $n_1 < n_2$ and $X_{n_1} - X_{n_2} > \frac{3}{4}\beta$ on A. Then $\epsilon < \frac{3}{4}\beta < X_{n_1} - X_{n_2} < \epsilon$ on A. It is contradiction.

In the case of $\beta = \infty$ we can easily prove the lemma.

LEMMA 6. If $(X_n)_{n=1}$ is a game better with time, A is an atom on (Ω, \mathcal{F}, P) and $A_n = \text{ess inf}\{B \mid B \in \mathcal{F}_n, A \subset B\}$ then for every $\varepsilon > 0$ there exist $M \in \mathbb{N}$ such that

$$\inf_{m \geq t} E[X_m | \mathcal{F}_t] - X_t \geq -\varepsilon \text{ on } A_t \text{ for every } t \geq M.$$

PROOF. It is sufficient to prove the lemma for sufficiently small $\varepsilon>0$. Take ε such that $P(A)>\varepsilon>0$. Then there exist M such that $P(E[X_n|\mathscr{F}_m]-X_m>-\varepsilon)>1-\varepsilon$ for every m, n such that $n\geq m\geq M$. Since for every $m\geq t\geq M$ $E[X_m|\mathscr{F}_t]-X_t$ is constant on A_t and $P(A_t)>\varepsilon$, $E[X_m|\mathscr{F}_t]-X_t\geq -\varepsilon$ on A_t for all $m\geq t$. Therefore $\inf_{m\geq t} E[X_m|\mathscr{F}_t]-X_t\geq -\varepsilon$ on A_t .

THEOREM 7. Let $(X_n)_{n=1}$ be a game better with time such that $\int_{(\tau < \infty)} X_{\tau}^+ < \infty$ for all stopping time τ and A is an atom of the probability space (Ω, \mathcal{F}, P) , then $\lim_{n \to \infty} X_n$ exists and $> -\infty$ a. e. on A.

PROOF. Every random variable is constant a.e. on every atom. So we can put $X_n = a_n$ a.e. $(n=1, 2, \cdots)$ on the atom A where P(A) > 0 and a_n are real constants. Put $A_n = \operatorname{ess} \inf \{B | B \in \mathscr{F}_n, A \subset B\}$. Clearly, $A_n \in \mathscr{F}_n, A_n \supset A_{n+1}$, $A_n \supset A$ and A_n is atom of \mathscr{F}_n for all n. Suppose that $\lim X_n$ does not exist on A. Then $\limsup X_n = a > b = \liminf X_n$ on A for some a, b. We first prove the theorem in the case of a-b is finite. Then by above lemmas given $\varepsilon > 0$, there exists an integer n_1 such that

$$|a_{n_1}-a|<\frac{\beta}{4}, \inf_{m\geq n_1}E[X_m|\mathscr{F}_{n_1}]-X_{n_1}>-\frac{\varepsilon}{2} \text{ on } A_{n_1}$$

and we can find an integer n_2 such that

$$|a_{n_2}-b|<\frac{\beta}{4},\ A_{n_2} \leqq A_{n_1} \text{ and } \inf_{m\geq n_2} E\left[X_m|\mathscr{F}_{n_2}\right]-X_{n_2}>-\frac{\varepsilon}{2^2}.$$

Continuing this process by induction, we can take integers n_{2k-1} , n_{2k} , $(k=2, 3, \cdots)$ such that

$$|a_{n_{2k}}-b|<\frac{\beta}{4},\ A_{n_{2k-1}} \supseteq A_{n_{2k}},\ \text{and} \inf_{m\geq n_{2k}} E\left[X_m|\mathscr{F}_{n_{2k}}\right] - X_{n_{2k}} \geq \frac{\varepsilon}{2^{2k}} \ \text{on} \ A_{n_{2k}}.$$

Then we have

$$\int_{A_{n_{2k-1}}-A_{n_{2k}}} X_{n_{2k}} = \int_{A_{n_{2k-1}}} X_{n_{2k}} - \int_{A_{n_{2k}}} X_{n_{2k}} = \int_{A_{n_{2k-1}}} X_{n_{2k}} - P(A_{n_{2k}}) a_{n_{2k}}$$

$$\begin{split} &= \!\! \int_{A_{n_{2k-1}}} \!\! E\left[X_{n_{2k}} | \mathscr{F}_{n_{2k-1}} \right] - \!\! P(A_{n_{2k}}) a_{n_{2k}} \\ &\geq \!\! \int_{A_{n_{2k-1}}} \!\! \left(X_{n_{2k-1}} - \frac{\varepsilon}{2^{2k-1}} \right) - \!\! P(A_{n_{2k}}) a_{n_{2k}} \\ &\geq \!\! P(A_{n_{2k-1}}) a_{n_{2k-1}} - \!\! P(A_{n_{2k}}) a_{n_{2k}} - \frac{\varepsilon}{2^{2k-1}} \\ &\geq \!\! (a_{n_{2k-1}} - a_{n_{2k}}) P(A_{n_{2k}}) - \frac{\varepsilon}{2^{2k-1}} \\ &\geq \!\! \frac{1}{2} \, \beta P(A) - \frac{\varepsilon}{2^{2k-1}} \! \geq \!\! \frac{1}{2} \, \beta P(A) - \frac{\varepsilon}{2} \end{split}$$

Define $\tau = n_i$ on $A_{n_i} - A_{n_{i-1}}$ $(i=2, 3, \cdots)$ and $\tau = \infty$ elsewhere. Then τ is a stopping time. Take ε such that $0 < \varepsilon < \beta P(A)$.

$$\int_{(\tau < \infty)} X_{\tau}^{+} = \sum_{i=2}^{\infty} \int_{A_{n_{i}} - A_{n_{i-1}}} X_{n_{i}}^{+} \geq \sum_{k=1}^{\infty} \int_{A_{n_{2k-1}} - A_{n_{2k}}} X_{n_{2k}}$$

$$\geq \sum_{k=1}^{\infty} \left\{ \frac{1}{2} \beta P(A) - \frac{\varepsilon}{2^{2k-1}} \right\} \geq \sum_{k=1}^{\infty} \left(\frac{1}{2} \beta P(A) - \frac{\varepsilon}{2} \right) = \infty.$$

In second case of $a-b=\beta=\infty$, we can take $a_{n_i}(i=1,\,2,\,\cdots)$ such that $a_{n_{2i-1}}-a_{n_{2i}}\geq 1$ $(k=1,\,2,\,3,\,\cdots)$ and others are the same to the first case. Then we also can have $\int_{(\tau<\infty)} X_{\tau}^+ = \infty$. This contradicts the assumption and we proved that $\lim_{n\to\infty} X_n$ exists a.e. on A. Now suppose $\lim_{n\to\infty} X_n = -\infty$ on A. Then there exists an integer n_1 such that $a_{n_1}<0$ and $\inf_{m\geq n_1} E\left[X_m|\mathscr{F}_{n_1}\right]-X_{n_2}\geq -\frac{\varepsilon}{2}$ on A_{n_1} and we fine an integer n_2 such that $n_1< n_2$

$$A_{n_{1}} \supseteq A_{n_{2}}, \ a_{n_{2}} < \frac{1}{P(A)} [a_{n_{1}} P(A_{n_{1}}) - P(A_{n})]$$

$$\inf_{m \ge n_{2}} E[X_{m} | \mathscr{F}_{n_{2}}] - X_{n_{2}} > -\frac{\varepsilon}{4}$$

and

on A_{n_s} . By induction we can take a sequence $\{n_k\}$ such that

$$n_{k-1} < n_k$$
, $A_{n_{k-1}} \ge A_{n_k}$, $a_{n_k} < \frac{1}{P(A)} [a_{n_{k-1}} P(A_{n_{k-1}}) - P(A_{n_{k-1}})]$

and $\inf_{m\geq n_k} E[X_m|\mathcal{F}_{n_k}] - X_{n_k} > -\frac{\varepsilon}{2^k}$ on A_{n_k} . Then we have

$$\begin{split} \int_{A_{n_{k-1}}-A_{n_{k}}} & X_{n_{k}} = \int_{A_{n_{k-1}}} X_{n_{k}} - \int_{A_{n_{k}}} X_{n_{k}} \geq \int_{A_{n_{k-1}}} E\left[X_{n_{k}} | \mathcal{F}_{n_{k-1}}\right] - P(A_{n_{k}}) a_{n_{k}} \\ & \geq \int_{A_{n_{k-1}}} \left(X_{n_{k-1}} - \frac{\varepsilon}{2^{k-1}}\right) - P(A_{n_{k}}) \ a_{n_{k}} \end{split}$$

$$\geq P(A_{n_{k-1}})a_{n_{k-1}} - P(A_{n_k})a_{n_k} - \frac{\varepsilon}{2^{k-1}}$$

$$\geq P(A_{n_{k-1}}) - \frac{\varepsilon}{2^{k-1}} \geq P(A) - \frac{\varepsilon}{2^{k-1}} \geq P(A) - \frac{\varepsilon}{2}.$$

Define $\tau = n_1$ on $A_{n_{i-1}} - A_{n_i}$ and $\tau = \infty$ otherwise. Then τ is a stopping time. Take ε such that $0 < \varepsilon < P(A)$

$$\int_{(\tau < \infty)} X_{\tau}^{+} = \sum_{i=1}^{\infty} \int_{A_{n_{i}} - A_{n_{i-1}}} X_{n_{i}}^{+} \ge \sum_{i=1}^{\infty} \left(P(A) - \frac{\varepsilon}{2^{i-1}} \right) \ge \sum_{i=1}^{\infty} \left(P(A) - \frac{\varepsilon}{2} \right) = \infty$$

This contradicts our assumption.

COROLLARY 8. Let $(X_n)_{n=1}$ be a game fairer with time such that $\int_{(\tau < \infty)} |X_{\tau}| < \infty$ for every stopping time τ and an atom A of probability space. Then $\lim_{n \to \infty} X_n$ exists and is finite a.e. on A.

PROOF. By the similar method, we can easily prove it.

THEOREM 9. Let $(X_n)_{n=1}$ be a game better with time such that $\sup_n \int |X_n| < \infty$ and let A be an atom of the probability space. Then $\lim_{n\to\infty} X_n$ exists and is finite on A.

PROOF. Suppose that $\lim_{n\to\infty} X_n$ does not exist on A. Then $\lim\sup_{n\to\infty} X_n = a > b = \lim\inf_{n\to\infty} X_n$ on A for some a, $b \in R$ and clearly $a-b=\beta < \infty$. So we can take the same n_k as in the first case of previous theorem. Then we have for every k with $n_{2k} \le m$

$$\begin{split} &\int_{A_{n_{2k-1}}-A_{n_{2k}}} X_m \!=\! \int_{A_{n_{2k-1}}-A_{n_{2k}}} E\left[X_m | \mathscr{F}_{n_{2k}}\right] \! \geq \! \int_{A_{n_{2k-1}}-A_{n_{2k}}} \! \left(X_{n_{2k}} \!-\! \frac{\varepsilon}{2^{2k}}\right) \\ &\geq \! \int_{A_{n_{2k-1}}-A_{n_{2k}}} \! X_{n_{2k}} \! -\! \frac{\varepsilon}{2^{2k}} \! \geq \! \int_{A_{n_{2k-1}}} \! X_{n_{2k}} \! -\! \int_{A_{n_{2k}}} \! X_{n_{2k}} \! -\! \frac{\varepsilon}{2^{2k}} \\ &= \! \int_{A_{n_{2k-1}}} \! E\left[X_{n_{2k}} | F_{n_{2k-1}}\right] - P(A_{n_{2k}}) a_{n_{2k}} \! -\! \frac{\varepsilon}{2^{2k}} \\ &\geq \! \int_{A_{n_{2k-1}}} \! \left(X_{n_{2k-1}} \! -\! \frac{\varepsilon}{2^{2k-1}}\right) \! - P(A_{n_{2k}}) a_{n_{2k}} \! -\! \frac{\varepsilon}{2^{2k}} \\ &\geq \! \frac{1}{2} \beta P(A) - \! \left(\! \frac{\varepsilon}{2^{2k-1}} \! +\! \frac{\varepsilon}{2^{2k}}\right) \\ &\geq \! \frac{1}{2} \beta P(A) - \! \frac{\varepsilon}{2^{2k-2}} \quad \text{for } n_{2k} \! \leq \! m \end{split}$$

and

$$\begin{split} &\int_{\varOmega} |X_m| \geq &\int_{A_{\pi_1} \cdot A_{\pi_1}} |X_m| + \dots + \int_{A_{\pi_{2k-1}} - A_{\pi_{2k}}} |X_m| \\ &\geq & \Big(\frac{1}{2} \, \beta P(A) - \varepsilon \Big) + \dots + \Big(\frac{1}{2} \, \beta P(A) - \frac{\varepsilon}{2^{2k-2}} \Big) \geq & \Big(\frac{1}{2} \, \beta P(A) - \varepsilon \Big) \cdot k \end{split}$$

Take ε such that $\frac{1}{2}\beta P(A) > \varepsilon > 0$. Then as $k \to \infty$, $\lim_{\Omega} |X_m| = \infty$. This completes the theorem.

Now we consider the following example. It shows that if A is not an atomic set, the a.e. convergence is not assured. To show this we shall construct a counter example. Let $\Omega=[0,1]$ and P be a Lebesque measure on Ω . Define $X_n(x)=1$ if $x\in [k2^{-\nu},\ (k+1)2^{-\nu}]$ and $X_n(x)=0$ otherwise, where $n=k+2^{\nu},\ 0\leq k<2^{\nu}$. Put $\mathscr{F}_n=\sigma(X_1,\ \cdots,\ X_n)$ and $\mathscr{F}=\sigma(\bigcup_{n=1}^{\infty} F_n)$. Then \mathscr{F} contains no atomic set and $(X_n)_{n=1}$ is a game better with time which does not converge a.e.

Kyungpook University.

REFERENCES

- [1] L.H. Blake, A generalization of martingales and two convergence theorems, Pacific J.Math. 35(1970), 279-283.
- [2] _____, A note concerning the L₁ convergence of a class of games which become fairer with time, Glasgow Mathematical Journal, 13(1972), 39-41.
- [3] A. Mucci, Limits for martingales like sequences, Pacific J. Math., 48(1973) 197-202.
- [4] _____, Another martingale convergence theorem, Pacific J. Math., 64(1976), 539-541.
- [5] L.H. Blake, Weak submartingales in the limit, J. London Math Soc. (2) 19(1979), 573-575.
- [6] _____, A note concerning first order games which become fairer with time, J. London Math. Soc., 9(1975) 589-592.
- [7] J. Neveu, Discrete-Parameter Martingales, 1975.