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Ey S.P. Singh

(. Intraduetion

Author and Sinha [2] have deflined generalised Finsler spaces of first order.
Recently author has Jefined gener lised Finsler spaces of second order also and
denoted them by Z—RG—FH and 2-RG-F,, The object of present paper is to decom-
pose the Z-recurrent curvature tensor fields in these spaces and also to study the
important properties of decomposition tensor fields.

We consider n-dimensional generalised Finsler spaces GF, in which connection
parameters for the locally Minkowskian and locally Euclidean spaces are denoted
by P;; and F:L respectively. Let T' be a vector field of GF , then the two pro

cesses of di ferentiation are defined as under

1 i B i ik 2)

©.1 T =0T +3 9,1 +PT
and

(0.2) T =1 -y ' +rort
where

(0.3) et i
and

(0.4) 6 :ia:?. F 1.

With the help of ahove covariant differentiations two curvature tensor fields
K;;.:h and K 4 are defined.

The commutation formula involving the curvature tensor fields I?;.M and

K;M are given as follows [1]:

(0.5) o =T'Ry, —2T AT

- %]

1) Numbers in the brackets refer to the references.
2) @;=8/dx' and 3;=3/d%'.
3) 2T -[J*]"T‘: .'l‘_T 3 kis
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and
hof 3 h

(0.6) 27" |y =0, T K}y +T Ky =21 LA g

where
*§ _ 5 . i

(0.7 Ty =P ik = g

and
i i

(0.8) K=K !
We also have

(0.8 a) arr;;}':jikzo

In GF,, the curvature tensor fields R‘j.kh and K;M satisfy the following iden
tities

e 7
0.9 ==K
i
(0.10) K=Ky th.zK,.,,.
(0.11) K +K Km 2Ammr ,g ’

where (;) denotes covariant derlvatlve btased upon the connection parameter
3 * *
given by Q=P ., +2(j,
. H i i i
(0.12) Kjkh+Kkhj+Kkjk:2A Giene &
where (,) denotes covariant derivative based upon the connection parameter
given by RTH;FTM

i el =1 Ear | i =1 *m
0.13 iy jhh P +K jk!.k+ﬂ j[k,h‘_zfﬁ jnel.P i.‘kl-‘“h;‘th [.: ﬁ ail [:’zk]] =4
and
-t -. ‘-:' m ; m 4
0.14) K,m: 1ki]k+Kﬂk[f:+F[ﬁehi 2 y—'K m? Kuf::amr 3

=2[K’ jm[A [k)a] ]J;zkArE‘."!] jm!zA (k] 1

Sinha and Singh [2] have defined recurrent curvature tensor fields in GF,
as under:

The GF, in which there exists a non-zero vector v, such that the curvature

tensor fields K‘;k,.z and K;.w: satisfy the relations

i - al
(0.15) K en =Vl

and
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i i
(0.16) K ioni=21K jpa
respectively, are said to be recurrent GF, (or in brief RGF,) and the curva-

ture tensor fields of these spaces are called recurrent curvature tensor fields.
Here », is known as recurrence vectcr field.

Contracting the indices 7 and % in (0.16) we find

(0.17) K=tk
Transvecting (0.16) by ' and using (0.8), we write
(0.18) E =i
Author [3] has defined recurrent generalised Finsler spaces of second order
and denoted them by 2*RGF"1 and 2-RGF, as under:

The n-dimensional generalised Finsler spaces GF,, in which relative and

Cartan curvature tensor fields K".kh and K':kh satisfy the relations

i i
(0.19) K}kh it a.’m Jkir 1 E]fh‘l¢o
and
i i
(0.20) K kh| I ﬁr.'mK kR Kikk#o

respectively, where a,,, is a non-zero recurrence tensor ficld, are defined as
recurrent generalised Finsler spaces. Also the curvature tensor fields which
satisfy (0.19) and (0.20) are defined as recurrent curvature tensor fields of
second order.

Contracting the indices 7 and % in (0.20), we find

(0.21) K

along with Kjk¢0 "

h.u:amejk
Transvecting (0.20) by ! we obtain
i - i
(0.22) K okk|im~ Cim Lo
in view of (0.8).
Author [3] has proved the following theorem which is of further use.
THEOREM. The recurrent generalised Finsler spaces of first ovder for which
the recurrence vector field v, satisfies

(0.23) a,,=v, . +to2,70
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and
(0.24) @1 =V |V, 70

are also recurrent generalised Finsler spaces of secowmd order but the converse is
nol true in general.

1. Decomposition of curvature tensor field I?;kh in 2-RGF,

We consider the decomposition of relative curvature tensor field Eiwz in the
following manner

] i
(1. ].) Kjkk:X éjkh’

2 e - £ r
where 9'5;'#:: is a non-zero decomposition tensor field and X is any vector field
such that

(1.2) £ =1,
Furthermore, we decompose the tensor field ¢ ipp 5 under
(1.3 Biun=?; B

According to thecrem stated in section 0, every recurrent generalised Finsler
space of first is also recurrent generalised Finsler space of second order but the
converse is not true, in general. Thus the theorems stated in [4] must also
hold good in this space and hence we can directly state the following theorems
for the above decomposition in 2-RGF .

THEOREM 1.1. In 2-RGF,, the decomposition tensor fields ¢
the following {dentities

i and By, satisfy

1.4 @ (-éj.'?.fz: _'?5;‘;:1% .
(® Gpn=—Dpe»
: . i
(e) B ipn T i T Cnie =20 i 1 ¢
and
*i *i N *ht 0
(D B iy T Paon (1) TP 1P ity = A 121 k1) sm?

THEOREM 1.2. In 2-RGEF ur Lhe mecessary awnd sufficient condition for ihe
decomposition tensor fields gﬁjkk and @, to be recurrent

(L5 (a) Bin, 1= géjkk
(b) Bun 1=V P
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is that the vector field X' is covariant constant.

THEOREM 1.3. [n2-RGF,, the decomposition tensor fields ¢, and ¢y, satisfy
the Bianchi identities

.6) @) Djpn ;+Bjus, e+ Pjrpa=21P E:;ﬁjjkm”LP ;;1 Biwm+ P T;Z'kl%ml
and

(®) B 48,1813, 1 =2 P [y B+ 2 Bin P 1

respectively along with the condition that the vector field X' is covariant constant.

Differentiating (1.5a) covariantly and using (1.5a) we find

(1.7) '-éjiw’z, .zmz{”z,m"'”f”m)ﬁi’jkh'
Noting (1.23) in the equation {1.7), it gives

(L.8) Dian, 1m =% P -
In view of (1.2) and (1.3), the equation (1.8) yields

(1.9 B, 1= 1 P

Hence we state

THEOREM 1.4. In 2-RGF,, if the decomposition tensor fields ¢ it and ¢, are
first order vecurvent, then these lensor fields are also second order recurvent but
the converse is not true.

Commuting the indices / and # in (0.19) and using (0.5) we obtain

Fr i i &7 =i r 7 r i r ek

(L.10) K jkkﬁ i K r.’sz jml K jr;ﬁ Eatl K jkrf? i~ 21?;&1;, rA [Im) =2a [fm] K jkh

In view of (1.1), (1.2) and (1.3) it becomes
: e 7 TR i r 3
Q1) -XX0p,0,8,,~X Xvwd,6,,-2X v, A f!m}:zafim]X‘uﬁbkk'

Transvecting (1.11) by v, X’ and making use of (1.2), (1.3) and (1.4a), we
have

¥ . L) r
(1.12) X b r =X BBt = 2, 1A (1) =28 (1) P
Here we consider ¢,;,, X =0, the equation (1.12) becomes
r
(1' 13) ﬂr¢khA [71n] =a‘[m!]¢kk

by means of (1.5b).
Since ¢,,70, the equations (1.13) yields
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- 4
(1.14) DA (1 = (1) *
Conversely if (1.14) is true the equation (1.11) takes the form
(1.15) X' X008, +X X v98,8,,=0

Multiplying (1.15) by v,.Xj and using (1.2), (1.3) and (1.4a) we get

(1.16) | X Gy 81— X Bz §,.=0-
Since ¢,,,7#0, therefore (1.16) gives
r r
1.17) X G =X Brnr
which implies
(1.18) Buty X =0.

Thus we state.

THEOREM 1.5. In 2—RGF‘3 the mecessary and sufficient condition for the
relation

’
Uy Aty =% (m)

to be true is that
Gupr X =0,
Simplifying (1.4c) by means of (1.3), we find
(1.19) ngﬁk,,+vk¢5bj+vh¢jk=2AU|km;,y!-
Multiplying (1.19) by X’ and using (1.2) and (1.4b), we obtain
(1.20) Gt 0,03 X =0, 6, X =201 2 X

Let us assume that ¢ki X’=0, then (1.20) takes the form

.
(1.21) Geu=2A a2 X -

Conversely if, (1.21) is true, the equation (1.19) becomes
(1.22) vkquk:vkqﬂﬁ

in view of (1.4b).
Transvecting (1.22) by X*x" and noting (1.2), we have
h h
(1.23) PiX =¢J.kX

which implies
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h
(l. 24) ¢th =0.
Accordingly we have

THEOREM 1.6. In 2-RGF u» Uhe necessary and sufficient condition for the
decomposition tensor field ¢y, to be expressed as

{ ¥
Pen=2A(1am s ¥ X
is that

B, X’ =0.

Differentiating (0.13) and simplifying with help of (0.13), (0.15), (0.19),
(1.1) and (1.2), we obtain (1.25)

(1.25) (0548106 ui@n+ Bj1a%hn) — Ve [0Bia 0000 0,9 04] +210,,,P }?5.; -
P 11, 5 Pimt P 10k ol
By means of (0.23), the equation (1.25) reduces to
(1.26) vy, Bient 0 o Bins T Vh nPjia 2[00 P ’[;’;J,n+¢jnrhp '[Z'u..,+¢,-m: P ;i:‘&].n] =0.
Transvecting (1.26) by X’ and noting (1.2) and (1.3), we get

*m *m *m
(1.27) a_,l"¢kh+yk'ﬁ¢h,+vk'n¢m+2[¢mkP[m]l”-i-géthw]_ﬂ-rgémPIkﬂl”] =Q.
Accordingly we have

THEOREM 1.7. In 2-RGF,, the decomposition tensor fields g And Gy salisfy
the following relations

“m *m *m
vl.a¢jkh+”k.n¢jh.f+"h.n¢j:k+2[¢jmkp [lh],n+¢jmkp [k!]+¢jmlP [hk],u] =0
and
. *m *m . *m
V1, n Oun 08, Oni+ Vi, 1 T2 (i P [fkl.x+¢mbP [H].n_‘_émIP k)l =0

respectively.

REMARK 1.1. In 2-RGF . if the vector field X" is covariant constant it im
plies that 2, is also covariant constant.

By virtue of Remark 1.1 we state

COROLLARY 1.1. In 2-RGF, the decomposition tensor fields Gien and Oy, sat-
isfy the following relations
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M P P™ =
¢.fﬂ¢kp [:h].s+¢jmk [kn,n+¢jml [Hz].n"o
and
*m *‘m irm
Pt (15, w7 B 1101, T Pt P (i), =0

respectively.
2. Decomposition of curvature tensor field Kj.kh in 2-RGF .

In this section we decompose the Cartan’s Curvature tensor field Kj.kh in the
form

i i

2.1 Eon=X'0 s
where @, is a non-zero decomposition tensor field and the vector field X'
satisfies the relation Xiyi:]_.

Contracting the indices 7 and % in (2.1) and using (C.10), we get

(2.2) K =015
where
@3 Qv’j.eozf} jkich'
Transvecting (2.1) by ! and noting (0.8), we fin .
24 B i ljzaak}z’
where
2.5 K ;!eil =X iaa.w; E

Similar to that of Section 2.1, every RGF, is also 2-RGF, and hence we can
state the following theorems similar to that of RGF, [4] which are true in
2-RGF,,

THEOREM 2.1. [In 2-RGF,, the decomposition tensor field &, and ¢, sal-
isfy the following identities

2.6) () P jen= P ju
(b) aakﬁ = _gohk
-r - !
© P;kﬁ‘ﬂ.”;-hj‘*‘ahjk:zﬂiﬂmhl.l"' "

THEOREM 2.2. In 2-RGF, the necessary and sufficient condilion for the

decomposition tensor fields § ., and &y, to be recurrent i.e.
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@7 @ 5;&#:1="z5m
(b) Boknit =01 Bop
is that the vector field X' is covariant constant.

The covariant differentiation of (2.7a) yields

(2.8) B itniim =@t V0,00 jia
from (0.20), the equation (2.8) becomes

(2.9) B it tm = %tm D jkh »
Transvecting (2.9) by x’ and using (2.4), we get

(2.10) B ok 1 =P ok

because X' is covariant constant for @, to be recurrent.

Hence we state

THEOREM 2.3. In 2-RGF,, if the decomposition tensor fields 6;’&# and @ okn 9T€
first order recurrent then these tensor fields are also second order recurrent along
with the condition that the vector field X' is covariant constant.

In view of (0.16), (2.1) and (2.4), the Bianchi identity (0.14) takes the form
@) x' (9,8 s+ 04 jua T 2iBjnd TFX" Bopd :—j‘*'éomamr ;;+5om3mr :;]
=2X" 1B g\ oy B Sy B s ]
Multiplying (2.11) by »; and using (2.7a) we have
(2.12) B jpnys+ P junia TG jupptFX "0; BosOml” ;:+aok13mr ;:+aalkamr :;]
=218 ;s tar) T ot Al + (1] -
Transvecting (2.12) by lj, we obtain
@13) B +8 rta+ Borein=2 B Tury + Bomt Aea; + Boms Mpray]

by virtue of (0.8a) and (2.4).
Accordingly we state

THEOREM 2.4. In 2-RGF, the decomposition tensor fields § i, and § ,, satisfy
the Bianchi identities
B iy +8 w1t B juaial +FX 0,800l 3% Boii0 Ly Botill33)
m m m
=2 fa,-mkA [41] +a;‘m1A[k}:] +6;‘mhA [He]l
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- " [ e
aﬁkbll +aokf] & +§5o!k1;z =2 [@omkA [R) +§—50m1 A{k}a] ngamk AU.le]] 2
respectively along with the condition that the vector field X ! is covariant constant.

Differentiating (2.13) covariantly and making use of (2.7b) and (2.10), we
obtain

e 4 - = m
@1 2Bt 2haBont T 2 pnPorn= Val 1B ok a¥ 8Pont Tl sPo1s 2 Bonr (4

- n i m
Boms e 1 Pomb (127 1)
From (0.24), the equation (2.14) reduces to

- m Hi n
@15 2Bt Vh @ ot T 0n1nPotr =2 B omp (a1 Bome A [kR] |2 + B o A e 1l

Hence we state

THEOREM 2.5. In 2-RGF,, the decomposition tensor field -Eokh satisfies the
relation

- 1 n i - w
¥ lnéomk-i_vk} néuk! Tyh[ng‘)!o!k=2 [ﬁumﬁA [hi] | +9—Drﬂm!A{kk} ln+¢0mflA[Ik] In] ¥

REMARK 2.1. If the vector field X' is covariant constant it implies that v,
is also covariant constant.

In view of Remark 2.1, Theorem 2.5 takes the following form: Cor. 2.1. In
2-RGF, the decomposition tensor field §,,, satisfies the relation

aamk&ﬁi] 1n+ﬁsamlay[mkk] in+§50mh&?€k] [ %
3. Another decomposition of Cartan’s Curvature tensor field K;m in 2-RGF,
In 2-RGF, we decompose the Cartan’s Curvature tensor field & ;M as under
3.1) K;khzii 95;:‘#: :
where the decomposition tensor field gzﬁ:kh is homogeneous of degree 1 in i

Contracting the indices ¢ and % in (3.1) and using (0.11), we find

(3.2) Kjk :?5}1, N
where
* i g‘ *
(3.3 gbjm.x =04

Transvecting (3.1) by ¥ and noting (0.8), we get
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3.9 K;khz :Mii’
where
(3.5 ¢:kh=¢;k.&lj
Contracting the indices 7/ and & in (3.4), we have
(3.6) S
where
@.7) Bt =i

As we know that every RGF  is also 2-RGF , hence similar to that of RGF,
[4] we can state following theorems in 2-RGF, also.

THEOREM 3.1.  In 2-RGF the decomposition tensor fields ¢;M and gb:kh satis-
[y the idenlities

3.8 D=9 jhk
and

3.9 Bosn™ ~Pons
respectively.

THEOREM 3.2. In 2-RGF,, the decomposition tensor field ¢:,-k fs expressed in
the form

G Y- il
(3.10) o= F Buajy TAjiaa.e & 1-

-

THEOREM 3.3. [In 2-RGF,, the decomposition tensor fields é;“, . é:k and

*
0, behave like recurrent tensor fields as under

(3.11) ¢;fah| ! :”l¢;kh :

(3.12) ¢:kk| 1= ”z¢:kh :

(3.13) B =25
and

(3.149) ¢:k|;="'r :k &

THEOREM 3.4. In 2-RGF,, the decomposition tensor field ¢;kh satisfies the
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following Bianchi identity

(3.15) ¢;kh| ! +¢':}d |& +¢:lku;:2 [(”s:m!Ar&'k] "‘9"’;»;113'[’;::] +¢:mki‘t’ﬁrk] I
In view of Theorem 3.3 and the equation (0.24) we state

* *

- ey . *
THEOREM 3.5. In 2-RGF, the decomposition tensor fields qSﬂm, B opne gﬁﬁ and

r,ﬂ:k are also second order recurrent i.e.
* *
(3.16) (a) Bintm™ VP »
* *
(b) Dot =1 Lot »
* *
(© éjklim:alméjk .
* *
(d) éok;!m=aim¢ok L

The covariant differentiation of (3.13) yields
G.17) @ 1y 8= ) im)
in view of (0.24)
Using commutation formula (0.6), the equation (3.1), (3.4) and (3.13) in
(3.17), we find
* * * * ok * Lp* * h
(B.18) 2,0, =04y 0 f ~ P Bimi— O ¢km.'_2¢jkva[!m] &
Transvecting (3.18) by 7 and noting (3.5), we have
* * * L pw " h
G 19 20,0, =28y Potnl =B B _%akvk&[!m] ,
where ¢:k=¢;k and V=#|F.

If we assume qﬁ:h :E":O, the equation (3.19) becomes

*

1 " ]
(3.20) @5,,,,,, = (2 1m) 2 A[.’m]l

because cS;k#O.

Conversely if (3.20) is true, the equation (3.19) reduces to

I
(3.21) ¢w’zx gé.'{mfzo'
Since ¢;m,¢o, therefore (3.21) takes the form
(3.22) By i =0.

Accordingly we have
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THEOREM 3.6. In 2-RGF,, the necessary and sufficient condition for the

decompasition tensor field d: to be expressed as

I
* | P
Oo!m:F [a[!m] +vk‘& [Im]]
is that
* .h
B % =0.
Taking covariant differentiation of (3.15) and making use of (3.12), (3.15)
and (3.16b), we obtain
G2 2t o T 0B =V 2Byt O D o TR n¢u.rk+2I¢om:A[&hnn

ém} &A[fn’» IEN amh‘ﬁ [tk] MI
Simplifying with help of (0.24), the equation (3.23) gives

e > * . * nt
G20 v, Bt Do k1 Pots =2 Pt A iy ™ damx-\ IR ¢amhA (a1l
We state,

THEOREM 3.7. In 2-RGF,, the relation

* = * i T m
V1Bt T L P ont T CninPote ™ 2 BomiN ey ;n+¢ AR (A1 +¢mhA (78] 1)
holds good.

Kenyatta University
Nairobi
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