SEQUENTIAL CONTINUITY

By Norbert Brunner

In this paper we improve a result of M. Jaegermann [1], AC^{ω} is the countable axiom of choice.

THEOREM. AC" is equivalent to SC.

SC: Each sequentially continuous real valued function on a metric space is continuous.

PROOF. That AC" implies SC is standard.

For the proof of the converse, be $(A_n)_{n \in w}$, $w = \{0, 1, \ldots\}$, $A_n \neq \phi$, a counterexample to AC^w . $C_n \neq \phi$ is the set of all finite sequences $(a_k)_{k \in n}$, such that $a_k \in A_k$; $C_n \cap C_m = \phi$ for $n \neq m$. If a function c on $S \subseteq w$ satisfies $c(k) \in C_k$ for $k \in S$, S is finite, for otherwise $a(k) = c(n(k))_k$, $n(k) = \min\{n \in S : k \in n\}$, defines a choice function on $(A_n)_{n \in w}$. We set $A = \bigcup \{C_n : n \in w\}$. $X = A \bigcup \{a\}$ for $a \notin A$ and construct a metric d on X through d(x, x) = 0, d(x, y) = 1 for $x \neq y$ in A and $d(x, y) = \frac{1}{n+1}$ for $x \in C_n$. f is the characteristic function of A: Since $a \in A^-$, f is not continuous. f is sequentially continuous: Be (x_n) a sequence in A. We set $a(x) = \frac{1}{d(x, a)} - 1$, so $x \in C_{a(x)}$, S is the set of all $a(x_n)$ such that $a(x_m) < a(x_n)$ for m < n, and $y_n = x_m$ for $n = a(x_m) \in S$: Since $y_n \in C_n$ for all $n \in S$, S is finite and each x_n is in $\bigcup \{C_n : n \leq \max S\}$. Thus $\lim x_n = a$ is impossible, proving the claim.

Kaiser Franz Ring 22, A-2500 Baden, Austria

REFERENCE

[1] M. Jaegermann, The axiom of choice and two definitions of continuity, Bull. Acad. Polon. 13(1965), 699-704.