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1. Introduction 

The exponential distribu tion as a failure mαlel has wide applicability. A 

we l1 known characterization of an exponential random variable T can be

obtained by means of its lack of memory property (FelIer [1. p. 8]). viz . • 

P(T > I+s)=P(T> t)P(T> s). s. 1능o (1. 1) 

which also serves to characterize a geometric random variable T. provided that 

T is positive integer-valued and that s and 1 in ( 1.1) are positive integers. 

In the study of the exponential or geometric distribution as a failure model 
1'or the description of a certain observational phcnomenon. it is to be noted 
that the lack of memory characterization ( 1.1) assumes the somewhat not 

readily acressible information regarding the probability distribution. This paper 

presents the foIIowing more easiIy applicable results wh ich can be used to 

predict the probability distribution of the failure mαJel on the basis 01 the 

more readily available knowledge concerning the expected values 01 the dis 

tribution truncated from above at various points. Our resu lts read as foIIows. 

THEORDI 1. 11 T is a 1UJlmegalive random variable wilh I;nile I/tean a1zd il 

F(t)=P(T드1) . IER. denoles tlze distribution lunclion 01 T. Ihen T is exponell 

tially d;slribμted .1 and o1lly ./. l or some cotlstant α> 0. 

E(T ^ t) =αF(t) l or all 1능O 

1Ulzere T ^ t dC1UJles Ihe iIψ’”“”‘ 01 T atzd t. 

(1.2) 

THEORE~! 2. A posilive nondegellerale γa1ιd01Jl variab/e T has a geometric-
.-1 

dislribι1;011 (i.e •• P(T=k) =pq^ k=l. 2. 3 ....• lor so",e p>O and q>O sal 

islyiηg p+q=1) .1 and only il. lor so"'e cO/lsla씨 a> 1. E(T A[I]) =αP(T드1) 

j끼ÌJr all 1> 0 (1.3) where [tJ detzoles tlze inlegral parl 01 1. 

2. Proof of Theorem 1 

We first observe that condition (1. 2) entails E(T)=a. If T is exponentiaIIy 

distributed with mean αi. e •• F (t) =I-e -I/a. 1-:;::0. and F(I) =0. 1 < 0. then it 
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ãs eas i1 y seen t hat (1.2) holds. 

Conversely, suppose ( 1. 2) holds. Then it is a direct consequence of Lebesgue’s 

dominated convergence theorem that E (T AI) and hence F(t) are continuous 

in t. Morem-er, it is easily seen using integration by parts [2, Theorem 21.67, 

p. 419J that 

E (T AI)= J o=s Al dF(s)=I-J~ F (s)ds, 1늘o. 

Thus (1.2) reJ uces to the integral equation 

자 F (s)ds+aF ( t)=t, t능O 

、이lich is equi,'alent to 

f~ R(s)ds+aR(t)=a. t~ ( 2. 1) 

where R( t) = I - F ( t) , t는0， which is continuous since F (t) is, Now it is easiJy 

seen (using Lebesgue’ s monotone convergence theorem and integration by parts) 
「∞that R(t) is Lμeb야es쟁;gu뼈elll뼈1 

S(tω1)= f~ R(s)d야s’ t능O. Then si뼈 R (t ) is integrable and continuous íor t능0， 
the Fundamental Theorem of lntegraJ Calculus [2, Theorems 18.16-18. 18, 

pp.285-286J asserts that 
dS(tl 
당'-L =R(t) ， 1> 0 (2.2) 

oand 50 (2. 2) is equivaJent to 

dSU ) 
a二꼼스 +S(t)=a， 1> 0 (2. 3) 

subject to S(O)=O. l t is easy to see that (2.3) yields the 5OJu tion S (t )= a 

(1_.-1/a) , t능O. Since R(O)= I-F(O)= I , it íollows from (2.2) that R(I)= . -1/a’ 

t三0， and so 

F ( t)= I-R(t )= I -e-1/a , I늘O. 
,Clearly , F (t) =O whenever 1<0. Hence T is ex ponentially distributed. 

3. Proof of Theorem 2 

lt is clear that (1. 3) requires T to be integer vaJued. For this reason, it 

s uffires to allow 1 to assume the values 1, 2, 3, in (1. 3). 

lf T is a geometric random variable, then, for any integer η능1 ， we have 

” E (T ^ n)= r:: kP(T = k)+"P(T >tz) 
k=l 
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11 k- l 
= r; kþq .. . + 1Iq 

k=l 

=(1 -q’ )/ p 

=aP(T드’‘)， where α= lIp. 

Conversely. SUppose that ( 1. 3) holds for 1=11능1. For k=O, 1, 2, "', n, let 

"k= P ( T < k ) . Then (1 . 3) is equivalent to 

’ εk(u.-u ，-， )+n(1-u.)=au •• 11=1. 2. 3, 
k= l ‘ ι ” … 

.-1 
‘.or n- r; ι‘=au. .. , 1% = 1, 2, 3, 

k=l “ -

which can be written as 

or 

[ ”- 2 } (11 - 1)- ε씨+1 μ _ I=aι . 11= 1. 2. 3. 
k=l "J 

au .+ 1 κ =ακ . n = 1. 2. 3. 
11-1 1f,- ‘ ” 

Thus. for n=1. 2. 3. we have 

α’‘，， = 1 + [(α 1)/aJ (aιn - I ) 
=1+ [(a- 1)/aJ [+[(α- 1)/aJ(ακn-2) J 

= 1+ [(α- 1)/αJ + [ (α - 1)/α] 2+ + 1(α- 1)/aJ n-\aκ1) 

= [1 - [ (α- 1)/αJ "} / [1 - [(α- 1)/이}. 
since aU1 = 1 +(α- 1)ι。= 1.

Hence. P (T :5,1I)=u. = 1- I (α 1)/αJ'. 11 = 1. 2. 3. i. e.. T has a geometric 

distribution with P(T = n)=ι” μ"_1 = (1 /a) [(a - 1)/aJ 
. - 1

’ 
n = 1. 2. 3. '" 

REFERENCES 

Univ. of Malaya 
Kuala Lumpur 22-11 
Malaysia 

~ l ] Feller. 'V. , AIl lt!troduclioll 10 þrobability theory and its oþþlica!iolls, Vol. 2, New 
York : John Vliley and Sons. Inc .. 1잊;6. 

![21 He“ itt. E. and K. Stromberg. Real and abstract analysis. J\ew York: Springer-Verlag. 
Ber1in, Hcidelbcrg. 1969. 


