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1. Introduction

The exponential distribution as a failure model has wide applicability. A
well known characterization of an exponential random variable T can be
obtained by means of its lack of memory property (Feller [L,p.8]), viz.,

P(T>t+s)=P(T>DP(T>s), s, 1=0 (1.1
which also serves to characterize a geometric random variable T, provided that.
T' is positive integer-valued and that s and # in (1.1) are positive integers.

In the study of the exponential or geometric distribution as a failure model
for the description of a certain observational phenomenon, it is to be noted
that the lack of memory characterization (1.1) assumes the somewhat not
readily acressible information regarding the probability distribution. This paper
presents the following more easily applicable results which can be used to
predict the probability distribution of the failure model on the basis of the:
more readily available knowledge concerning the expected values of the dis-
tribution truncated from above at various points. Our results read as follows.

THEOREM 1. If T is a nonnegative random variable with finite mean and if
F()=P(T<t), tER, denoles the distribution funciion of T, then T is exponen-
tially disiriduted if and only if, for some constant o> 0,

E(T AD)=aF() for all =0 (1.2)
where T\t denotes the infimum of T and t.

THEOREM 2. A positive nondegenerate random variable T has a geometric
distribution (Gue., P(T=K)=pg" ", k=1, 2, 3, -, for some p>0 and ¢>0 sat-
isfying p+q=1) if and only if, for some constant o>1, E(TN\I[])=aP(T<t)
Sor all 150 (1.3) where [t] denotes the integral part of (.

2. Proof of Theorem 1

We first observe that condition (1.2) entails E(T)=a. If T is exponentially

distributed with mean e, i.e., F(t)-:l—e_” % >0, and F({)=0, t<0, then it
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is easily seen that (1.2) holds.

Conversely, suppose (1.2) holds. Then it is a direct consequence of Lebesgue's
-dominated convergence theorem that E(T Af) and hence F(#) are continuous
in £. Moreover, it is easily seen using integration by parts [2, Theorem 21.67,
p.419] that

ETAD= [ sAt dF(s)=t- [ F(s)ds, 1=0.
Thus (1.2) reduces to the integral equation
3 F(ds+aF@®)=t, t20
which is eguivalent to
[, RGs)ds+aR(®=at, £=0 @1
where R({)=1-F(), t=0, which is continuous since F(¢) is. Now it is easily

seen (using Lebesgue’s monotone convergence theorem and integration by parts)
that R(f) is Lebesgue integrable with f:’ R(ODdi=E(T)=a. To solve (2.1), let

S(t)= f; R(s)ds, £=0. Then since R(?) is integrable and continuous for =0,
the Fundamental Theorem of Integral Calculus [2, Theorems 18.16—18.18,

Pp. 285—286] asserts that

ds) _
=R, 130 (2.2)

and so (2.2) is equivalent to

«BD i st)=a, £>0 (2.3)
subject to S(0)=0. It is easy to see that (2.3) yields the solution S()=a
(1—e~"®), £=0. Since R(0)=1-F(0)=1, it follows from (2.2) that R(#)=¢ "%,
#>0, and so

F@)=1-R®)=1-¢""%, >0.
Clearly, F(#)=0 whenever {<0. Hence T is exponentially distributed.

3. Proof of Theorem 2

It is clear that (1.3) requires T to be integer valued. For this reason, it
suffices to allow ¢ to assume the values 1, 2, 3, -, in (1.3).
If T is a geometric random variable, then, for any integer =1, we have

ECTAm)= 5 EP(T=F)+nP(T>n)
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5 k-1,
= Ekpq +ng"

=1-¢"Yp
=aP(T<n), where a=1/p.
Conversely, suppose that (1.3) holds for ¢t=n>1. For k=0, 1, 2, -, #, let
#,=P(T<k). Then (1.3) is equivalent to

n
Z Muy—uy_+n(l-u)=au, n=1, 2, 3, -

n—1
or n— 3 u,=au, n=1, 2, 3,
k=1

which can be written as
n—2
]:(”'1)“5“1?]+1_“n-1=““n- n=1, 2, 3, -

or au, +tl-w, =oaw, n=1, 2, 3, =
Thus, for =1, 2, 3, ---, we have
o, =1+ [(e—1/al (au,_,)

=1+ [(a—D/a] {+ [(a—1)/a] (err,_,)}

=1+ [(a—1)/e] + [(ae—1/a) *+ oot [(a— 1)/ " ey

={1- [(a—-1)/al"}/{1- [(a~1D)/al}.
since awu;=1+(a—1u,=1.

Hence, P(T<m)=u,=1- [(a—1)/a] " m=l 2 3, «, ie., T hasa geometric

distribution with P(T=n)=u,-u,_,=(1/a) [(a—1)/a] "l n=1, 2 3 -
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