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REMARKS ON SOME LOCALIZED SEPARATION AXIOMS AND 
THEIR IMPLICATIONS 

By Mashhour A. S. Hasanein I. A. and Farrag A. S. 

In 1978. Dube. K. K.; Misra, D.N. [3] have introduced the notation of some 

localized separation axioms and discussed some of their relations 、vith paracom~ 

pact spaces. R n-spaces. almost compact spaces. regularity and normality. 

In this paper, we introduce the concept of Ríl and show that Ríl is T o and 

R D but the converse may not be true in genera1. However. in the case of prin 

cipal spaces they are equivalent. It has proved that a door space is Ríl. A 

maximal and minimal R J) ~spaces are obtained. Also we generalize some theo 

rems in [3]. Finally we use the concept of localization to define T/ -distinct 

(i = O, 1, 2) and study the relations between TiÆstinct [3] and T/ • distinct. 

1. Definitions 

DEFINITION 1.1. [3J. Let (X, T) be a topological space. 

(i) A point xEX is To-distinct if, for any yEX with y낯x. there exists Uεr 

such that either xEU, y$U Or yEU, x$U 

Cii) A point xEX is Tj-distinct if , for any yEX with y~χ ， there exist U, 

vεr such that xE U, y$U and yEV, x종V. 

Ciii) A point xEX is T2-distiηct if , for any yεx 、，-ith y~x， there exist U, 

VEr such that xE U, yEV and unv=lI. 

DEFIKITIOK 1. 2. [4J. A topological space (X,.) is an RD-space if, for each 

xEX, {xJ n {y ‘ xE (yJ ) = {xJ , then {xJ' is closed. 

DEF‘ I:-lITION 1. 3. [5]. A topological space (X, T) is a door.space if each sbuset 

of X i8 either open or cIosed. 

DEF1NITION 1. 4. [9]. An open set is minimal at a point xεX if i t contains 

x and i8 contained entirely in any open set containing x. If there exists a 

minimal open set at each point of X , then the topological space is said to be 

pηηcipal. 

DEFINITION 1. 5. [8]. A topological space (X, T) is a maximal (or minimal) 

Q-space if it is Q and there is no any topology 감 on X fine (or weaker) than 
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7 such that (X, 감) is a Q-space. 

DEFINITION 1. 6. A topological space (X , r) is an ultraspace if the only 

topology on X finer than T is the discrete topology. For any two distinct points 

y , zEX a topological space (X, 7 ,,) is a principal ultraspace where ry, has the 

basis ßy,= [[X) , (y , Z) : xEX and x낯z) . 

DEFINITION 1. 7. [7J. Let (X, r) be a topological space and AζX. 

(i) The set A is a-almost paracompact if, every X-open cover of A has an 

X φen X-locally finite family which refine it and the closures of whose 

rnembers CQver A. The set A is almost paracompact if A i8 a lmost para 

compact as a subspace. 

(ii) the set A is a-nearly paracompact if, every X-open cover of A has an 

X-open X-locally finite family which refines it and the interiors of the 

c10sures of whose members cover A. A i8 nearIy paracompact if A is nearJy 

paracompact as a subspace. 

DEFINITION 1. 8. [2]. A su bset A 01 a space X is said to be α-nearly compact 

if for every cover [Ui ) of A by open sets of X , there exist a finite subfamily 

[U1, U" Un) such that Aζ U[σi : i = 1, 2, .. .• n}. 

DEFINITIOK 1. 9. [1]. Let (X, r) be a topological space and AζX. 

(i) xEX is a weak limit point of A if for each open neighbourhood N x of X, 
(N, - (x])nA r'ø. The set of all weak limit points of A , denoted by A’, 

is called the weak derived se! of A , 

(ii) A is weakly closed if A’ζA. 까.r eak closedness implies closedness. 

2. R'D 왜accs 

DEFINITION 2, 1. A topological space (X , 상 is an R1 -space if, for each xεX， 

(x) n [y : xE [y) ) = [x} and [x) ’ is closed. 

lt is clear that Rl} is R D ’ but the converse is not true since if X = [0 , b, c} , 

r= [X , ø, {a} ) , then X is RD but not Rv. 

THEOREM 2.1. Rl} -=::;'To 

PROOF. Let ( X , τ) be 탬 and x, yEX be tWQ distinct points. Then 써 n (z 
xE [z)} = {x) , for all xEX. This implies that yE 써 . y종 [z : xε {z)} 01' yE;츠 fxl. 

’'i E{z ‘ xε IZ) 1 or)'0슨 ~x} . y종 {z : xE {z} 1, ln these cases. there exists UεT surh 

tha 1: xεU， y중U 01" x<EU. yEU. Hence. (X , ,) is To' 
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Now, we give an example to show that the converse of Theorem 2.1 may 

not be true in generaI. 

EXAMPLE 2. 1. Let X= [- 1, 1] be a topological space with overlapping in 

terva l topology. Then X is T o' i. e. , r= ([ -I , b) , (0 , b) , (a, 1]) where a <O, 

b>O. Since {b} is To.distinct point.set and {b}'=(b, I} which is not c1osed. 

Hence, (X , ,) is not RÎ; . 

THEORE 'vI 2. 2. ln the case of a principal topological space T 0 and R Î; are 

equivalent. 

PROOF. From Theorem (2.1 ) RÎJ ==;,T o' 

Conversely; from the definit ion of To' we get Iy : xE 펴 } n {좌= {x}. If (X, T) 

is a principal T o topological space, then yE Ix} ’ implies that yE(Uy -U) 、rvhere

Ux and U, are the minimal open sets at x and Y. respectively. othen\,ise 

Ux=Uy and (X, r) is not To- Let zE ( {xl ? then there is a polnt yE {xl ’ such 

that xEUyζU， where U, is the minimal open set at 2, so 2E Ix}' and {x} ’ is a 

c10sed set. Hence To==;,RÎJ • 

RE :VIARK. The derived set of any set of X is c10sed if X is T j as it is shown 

in the following theorem. 

THEOREM 2. 3. Let (X,,) be a Tj.space , then the derived set A' 01 eacl, subset 

A 01 X is closed. 

PROOF. Let (X , ,) be T j, AζX. Let x~A'， then there exists an open neigh 

bourhood N , Of x such that N ,nA= {x} or rþ. lf N , nA=rþ. 50 N , nA’=Iþ and 

if N ,n A = {x} , we assume that thcre exists a point yE(N ,n A ’ ) . Then y낯X 

because x종A'. Since (X, ,) is T l' N , - {x} is an open set containing y and 

hence (N, - {x} ) n A 7"',,;. This contradicts t o N , nA= 써 . SoN , nA ’=,,;. Hence, 

A ’ is c1osed. 

THEOREM 2.4. Door=추RÎJ. 

PROOF. Let (X , r) be a door space thcn for any point xEX , {x} E; or (X 

{x})E r . If (X-{x})Er, {x}={x} and {x}'=rþand if {X}ET , {y:xE {y}} ={x} 

and {x} ’ = (X - (x}) n {x} . Then in both cases {y : xE {y} } n {x} = {x} and {x} ' is 

a closed set. Hence (X , r ) is an Rf, 'space. 

THEOREM 2.5. Each princiPal ultraspace (X"y)' where y, zEX are any (wo 

dis t11lct points 01 X ls a maximal Rñ • sþace. 
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PROOF. The proof is obvio야 \Ve construct exampIes of a minimal R'b -space. 

Let X be a non.empty set, p, qEX be two distinc! points and T be a topology 

on X such tha t 

1- (p). CX - (q) )Er and 

2-GEi , G~ø and G~X implies that there a re two o~en sets, V , WEi 5uch 

that VCGCW and G= VU (x) , xE(X - (VU (q))) and W = GU [y) , yE(X - (GU 

(q ))) with the following conditions 

( i) there is no open set G*Er, G*잊G such that VζG‘ or G용ζW， 

(i i) there is nO open set W용ET， W*~W such tha! GCW* and 

(iii) there is nO open set V*Ei, V*￥V such that V*CG. 

If X is a countable 5e! then i may take the form : r= (X , rþ, Ai : i~ 1 ) ， where 

A,=(P) andAi +1= Ai U (x) , XE(X - (AiU (q})). 

This construction topology is a principal topology and it has the prorert ies: 

1- each open set is minimal at a point of X. 

2- for each xE X there i8 an open set Gε:- such that G i5 minimal at x and 

3- !et x, yEX be two distinct points and G" G yεT be the minimal open sets at 

x a nd y , respect ively, the11 G ，~G、

TH EORE 'v! 2.6. A space (X , i ) 1Vhere i is I"e αboue COilstructed topology is a 

mlηimal R 'b -space 

PROαOF. lt is no。야t d이l“fficu 

s쟁pace. Let T얀‘ b야e a topology on X 、‘ hich is 、，veaker than "t then there is an 

open set G드i such that G종감. Since GE-r, there is an open set JVεi such that 

GCW and WE감. If GE-r is minimal at xoEX and WEr is minimal a t yoEX 

hence WEr i8 a minimal open set at both Xo and )'0- so each open set in 간 

containing Xo contains yo' Therefore (X , T*) is not T 0 and hence it 1S not RÎJ • 

T hen (X , i) is a minimal Rñ • space. 

REMARK. 1t is clear that (X , f) is a minimal To.space. 

3. Generalizations of some theorems in [3) 

1n [3, Theorem 3.2}, Dube and Misra showed that if, (X, T) is paracompact 

(with no separation axioms assumed) and if x 18 a T 2-distinct point disjoint from 

a closed set F , then x and F have dis joint open neighbourhoods. This resu!t 

can be considered as a special case of the following: 

THEOREM 3. 1. Let ACX be α꺼’ α-nearly paracompαct subsel aηd xEX be a 
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T 2-distinct point disjoint with A , tlzeη there exist two disjo i1zt oþen neighbOltrlw 

ods for x and A . 

PROOF. Let AC X be any α nearly paracompact subset and xEX - A is T T 

distinct point. Then -,<1=y , for every yE A. This implies that there exists an 

。야n neighbourhood U, of y such that x졸σ'，. T he fa mily [U y : yEA) is an 

φen cover of A, then there exists a X-locally finite of X-open sets V = [v ß : 

ßEj) which refines [U, : yE A) and such that Aζ u [Uß : βEj) . Let G= u lvs : 

βε}). Then G is an open set conta ining A and x뚱G. Therefore, there oxists 

an open neighbourhood N x of x intersects with a finite number members V ß,' 

V ß
‘

V ß• of members V. 80, there exist the corresponding open neighbour

hoods W l' W 2' .. . , W n of " such that W ‘OV ß, = 11, for all i = I, 2, n. Let 

Nxn c꾀lw‘)=Vx' ∞ vxnvß=1I for all VpεV， then vxnγ;=11. This implies 

that v.nG=II. Hence, V x and G are two 0야n neighbourhoods of x and A , re

s야ctively. 

Dube and Misra in [3). have proved that if, in a topological space CX , r ) , 

an a lmost compact set and a T 2.distinct point-set form a partition of X , then 

the almost compact set is closed. This result can be strengthed as follows 

THEORnI3. 2. If, in X , a1L a-almost paracompact sel and a T ?-disl i>,ct 

poinl-set form a parli lion of X , Ilzen Ihe a .almosl paracompacl set is closed. 

PROOF. Let A= (Yi : iε1) be an a-almost paracomp~ct subset of X and A' 
c 

is T2-dist inct point-set. Take any point xE A', then " "'<Yi' for each iEI. 50, 
there exist two families of open neighbourhoods : U = [U i : xEU‘’ i EI) and 

v = [Vi : yEVi, iEI) of" and yi' respectively, such that uinvi= II, for each 
iEI. One may consider V as an open cover of A , and since A is α-almost 

paracompact, then there exists a locally finite family Il = [V ß : ßEj) of open 

sets refining V and Aζ .l.J. .ï강. Also there exist an open neighbourhood N x of 
P'=J 

x intersects a fini te memhers of Il, then N.nc n U) = v ~ where I n is a finite 
X . I E!, ’ •. U 

subset of 1. T his implies that v.nc l.I . V B)=ø, so v xnA=ø. Hence A is clo
‘ βEj ,.. 

sed. 

COROLLARY. If A is a -nearly paracompacl, in Ihe above theorem, then A is 

weakly closed. 
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'i. New Iocalized separation axioms 

Mashhour [6], introduced and studied the separation axioms T;' , (i=O, 1, 2) 

a nd T t". The definitions of these axio l1ls a re based on those of the basic Iower 

separation axioms. '\'e localize some of these axioms as follows. 

DEFINITlON 4. 1. Let (X , τ) be a topologica l space 

(i) A point xEX is T O’ -distinct if, for any yEX with y =;Æ x there exists an 

open neighbourhood of one of tbem to which the other is a boundary 

point . 

(ii) A p이nt xεX is Tjζ씨sl’lzel if, for any yEX with y""x, tbere is an 

open neighbourhood for one point, say x, 10 which y is a boundary 

point, and an 때en neighbourhood of y to which x does not belong. 

(iii) A point xEX is T 2'.dislitlcl if, for any yEX with y"" .<, there exist two 

open neighbourhoods U and V of x and y, respectively, such that Un v 
=rþ. 

THEOREM 4. 1. 11 A is a1! a '1Iearly coημ:pacl subsel 01 X 01;ιd xEX is T2' 

distincl þoint dt"sjoi1μ witl, A , Ihe1l Iilere exisl disjoilll closed ，zeiglzboκrl/Oods 01 
x a1!d A . 

PROOF. It is similar to that of Theorem 3. 1. 

COROLLARY. Every pair 01 disjoi씨 a-llearly COtllþact su.bsets, Olle 01 which 

COllsisls 0/ T 2’ distinct POitlts has disjoinl closed 1zeighbourJzoods. 

THEORE:vI 4.2. Lel (X , τ) be a lopological space in wl，ηcι every tlOnet1ψIy open 

set is dense and xEX be To.dislinct pohι. theη x is T 0' -disUnct. 

PROOF. Let zEX be T o.rustinct point, then for every point yEX. y""x there 

exists an open neighbourhood U of one point of them which does not contain 

the other. Since U =X, then the other is a boundary point of U. Hence, x is 
To' .distinct. 

THEOREM 4.3. Le/ (X , τ) be a lopological s:pace, xEX be To'.dis/;"cl poi씨 

ψhich is also T1-dislincl. I"en z “ ηιdislillct. 

PROOF. Let x be To'-distinct pOint which is also Tj.distinct. then lor every 

yEX. y"".< there exists an φen neighbourhood U 01 one of them. say z. to 

which y is a boundary. Since x is T1.distinct and y"" x, then tbere exists an 

φen neighbourhood V of y which does not contain .<. Hence, x is Tj' -distinct. 
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THEOREM 4.4. Let x be T 1-distinct point i’t a connected toþo!ogical space 

(X. r) then x is T r' -distinct. 

PROOF. Let x be T1-distinct point in X. For every yEX, y~x， X- (x} is an 

open neighbourhood 01 y . Since (X. r) is connected. then 굿=김r =X. So. x is 

a boundary point 01 X - Ix}. Also there exists an open neighbournocd 01 x which 

does not contain y. Hence, ;t is T / -distinct. 

THEOREM 4.5. Let x be T 0 -dislη'zct ρoημ in a regulαr space X , then x is 

T 2' -distillct. 

PROOF_ Let X be a regular space. x is To-distinct point in X. Then. there 

is an open neighbourhood U 01 one point. say x. such that y rEU. Since X is 

regular. then there is a weakly closed neighbourhood V 01 x such that VζU. 

Then. X - V is o]len neighbourhood 01 y and xrEX - V. Since X is regular. 

x is T ,;' -distinct. 

THEORE'Il 4.6. Lel x be T1-distiηct point iη a nor;nal space X , then x is T 2’ 

disti11ct. 

PROOF. lt is similar to that 01 the above theorem. 
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