Kyungpook Math. J. Volume 22, Number 1 June, 1982

REMARKS ON SOME LOCALIZED SEPARATION AXIOMS AND THEIR IMPLICATIONS

By Mashhour A.S. Hasanein I.A. and Farrag A.S.

In 1978, Dube, K.K.; Misra, D.N. [3] have introduced the notation of some localized separation axioms and discussed some of their relations with paracompact spaces, R_D -spaces, almost compact spaces, regularity and normality.

In this paper, we introduce the concept of R_D^* and show that R_D^* is T_0 and R_D but the converse may not be true in general. However, in the case of principal spaces they are equivalent. It has proved that a door space is R_D^* . A maximal and minimal R_D^* -spaces are obtained. Also we generalize some theorems in [3]. Finally we use the concept of localization to define T_i' -distinct (i=0, 1, 2) and study the relations between T_i -distinct [3] and T_i' -distinct.

1. Definitions

DEFINITION 1.1. [3]. Let (X, τ) be a topological space.

- (i) A point $x \in X$ is T_0 -distinct if, for any $y \in X$ with $y \neq x$, there exists $U \in \tau$ such that either $x \in U$, $y \notin U$ or $y \in U$, $x \notin U$.
- (ii) A point $x \in X$ is T_1 -distinct if, for any $y \in X$ with $y \neq x$, there exist U, $V \in \tau$ such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.
- (iii) A point $x \in X$ is T_2 -distinct if, for any $y \in X$ with $y \neq x$, there exist U, $V \in \tau$ such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

DEFINITION 1.2. [4]. A topological space (X, τ) is an R_D -space if, for each $x \in X$, $\{\overline{x}\} \cap \{y : x \in \overline{\{y\}}\} = \{x\}$, then $\{x\}'$ is closed.

DEFINITION 1.3. [5]. A topological space (X, τ) is a *door-space* if each sbuset of X is either open or closed.

DEFINITION 1.4. [9]. An open set is minimal at a point $x \in X$ if it contains x and is contained entirely in any open set containing x. If there exists a minimal open set at each point of X, then the topological space is said to be *principal*.

DEFINITION 1.5. [8]. A topological space (X, τ) is a maximal (or minimal) *Q-space* if it is *Q* and there is no any topology τ^* on *X* fine (or weaker) than τ such that (X, τ^*) is a Q-space.

DEFINITION 1.6. A topological space (X, τ) is an *ultraspace* if the only topology on X finer than τ is the discrete topology. For any two distinct points $y, z \in X$ a topological space (X, τ_{yz}) is a principal ultraspace where τ_{yz} has the basis $\beta_{yz} = \{\{x\}, \{y, z\} : x \in X \text{ and } x \neq z\}$.

DEFINITION 1.7. [7]. Let (X, τ) be a topological space and $A \subset X$.

- (i) The set A is α-almost paracompact if, every X-open cover of A has an X-open X-locally finite family which refine it and the closures of whose members cover A. The set A is almost paracompact if A is almost paracompact as a subspace.
- (ii) the set A is α -nearly paracompact if, every X-open cover of A has an X-open X-locally finite family which refines it and the interiors of the closures of whose members cover A. A is nearly paracompact if A is nearly paracompact as a subspace.

DEFINITION 1.8. [2]. A subset A of a space X is said to be α -nearly compact if for every cover $\{U_i\}$ of A by open sets of X, there exist a finite subfamily $\{U_1, U_2, \dots, U_n\}$ such that $A \subset \bigcup \{\overline{U}_i^\circ : i=1, 2, \dots, n\}$.

DEFINITION 1.9. [1]. Let (X, τ) be a topological space and $A \subset X$.

(i) x∈X is a weak limit point of A if for each open neighbourhood N_x of x,
 (N_x-{x})∩A≠φ. The set of all weak limit points of A, denoted by A", is called the weak derived set of A.

(ii) A is weakly closed if $A'' \subset A$. Weak closedness implies closedness.

2. R_D^* -spaces

DEFINITION 2.1. A topological space (X, τ) is an R_D^* -space if, for each $x \in X$, $\overline{\{x\}} \cap \{y : x \in \overline{\{y\}}\} = \{x\}$ and $\{x\}'$ is closed.

It is clear that R_D^* is R_D , but the converse is not true since if $X = \{a, b, c\}$, $z = \{X, \phi, \{a\}\}$, then X is R_D but not R_D^* .

THEOREM 2.1. $R_D^* \Longrightarrow T_0$.

PROOF. Let (X, τ) be R_D^* and $x, y \in X$ be two distinct points. Then $\overline{\{x\}} \cap \{z : x \in \overline{\{z\}}\} = \{x\}$, for all $x \in X$. This implies that $y \in \overline{\{x\}}$, $y \notin \{z : x \in \overline{\{z\}}\}$ or $y \notin \overline{\{x\}}$, $y \notin \{z : x \in \overline{\{z\}}\}$ or $y \notin \overline{\{x\}}$, $y \notin \{z : x \in \overline{\{z\}}\}$ or $y \notin \overline{\{x\}}$, $y \notin \{z : x \in \overline{\{z\}}\}$. In these cases, there exists $U \in \tau$ such that $x \in U$, $y \notin U$ or $x \notin U$, $y \in U$. Hence, (X, τ) is T_0 .

142

Now, we give an example to show that the converse of Theorem 2.1 may not be true in general.

EXAMPLE 2.1. Let X = [-1, 1] be a topological space with overlapping interval topology. Then X is T_0 , i.e., $\tau = \{[-1, b), (a, b), (a, 1]\}$ where a < 0, b > 0. Since $\{b\}$ is T_0 -distinct point-set and $\{b\}' = (b, 1]$ which is not closed. Hence, (X, τ) is not R_D^* .

THEOREM 2.2. In the case of a principal topological space $T_{\rm 0}$ and R_D^{\star} are equivalent.

PROOF. From Theorem (2.1) $R_D^* \Longrightarrow T_0$.

Conversely; from the definition of T_0 , we get $\{y : x \in \overline{\{y\}}\} \cap \overline{\{x\}} = \{x\}$. If (X, τ) is a principal T_0 topological space, then $y \in \{x\}'$ implies that $y \in (U_y - U_x)$ where U_x and U_y are the minimal open sets at x and y, respectively, otherwise $U_x = U_y$ and (X, τ) is not T_0 . Let $z \in (\{x\}')'$ then there is a point $y \in \{x\}'$ such that $x \in U_y \subset U_z$ where U_z is the minimal open set at z, so $z \in \{x\}'$ and $\{x\}'$ is a closed set. Hence $T_0 \Longrightarrow R_D^*$.

REMARK. The derived set of any set of X is closed if X is T_1 as it is shown in the following theorem.

THEOREM 2.3. Let (X, τ) be a T_1 -space, then the derived set A' of each subset A of X is closed.

PROOF. Let (X,τ) be T_1 , $A \subset X$. Let $x \notin A'$, then there exists an open neighbourhood N_x of x such that $N_x \cap A = \{x\}$ or ϕ . If $N_x \cap A = \phi$. So $N_x \cap A' = \phi$ and if $N_x \cap A = \{x\}$, we assume that there exists a point $y \in (N_x \cap A')$. Then $y \neq x$ because $x \notin A'$. Since (X,τ) is T_1 , $N_x - \{x\}$ is an open set containing y and hence $(N_x - \{x\}) \cap A \neq \phi$. This contradicts to $N_x \cap A = \{x\}$. So $N_x \cap A' = \phi$. Hence, A' is closed.

THEOREM 2.4. Door $\implies R_D^*$.

PROOF. Let (X, τ) be a door space then for any point $x \in X$, $\{x\} \in \tau$ or $(X - \{x\}) \in \tau$. If $(X - \{x\}) \in \tau$, $\overline{\{x\}} = \{x\}$ and $\{x\}' = \phi$ and if $\{x\} \in \tau$, $\{y : x \in \overline{\{y\}}\} = \{x\}$ and $\{x\}' = (X - \{x\}) \cap \overline{\{x\}}$. Then in both cases $\{y : x \in \overline{\{y\}}\} \cap \overline{\{x\}} = \{x\}$ and $\{x\}'$ is a closed set. Hence (X, τ) is an R_D^* -space.

THEOREM 2.5. Each principal ultraspace (X, τ_{yz}) , where $y, z \in X$ are any two distinct points of X is a maximal R_D^* -space.

PROOF. The proof is obvious. We construct examples of a minimal R_D^* -space. Let X be a non-empty set, $p, q \in X$ be two distinct points and $\hat{\tau}$ be a topology on X such that:

 $1-\{p\}, (X-\{q\}) \in \hat{\tau}$ and

 $2-G \in \hat{\tau}, G \neq \phi$ and $G \neq X$ implies that there are two open sets, $V, W \in \hat{\tau}$ such that $V \subseteq G \subseteq W$ and $G = V \bigcup \{x\}, x \in (X - (V \cup \{q\}))$ and $W = G \cup \{y\}, y \in (X - (G \cup \{q\}))$ with the following conditions:

(i) there is no open set $G^* \in \hat{\tau}$, $G^* \neq G$ such that $V \subset G^*$ or $G^* \subset W$,

(i i) there is no open set $W^* \in \hat{\tau}$, $W^* \neq W$ such that $G \subset W^*$ and

(iii) there is no open set $V^* \in \hat{\tau}$, $V^* \neq V$ such that $V^* \subset G$.

If X is a countable set then $\hat{\tau}$ may take the form: $\hat{\tau} = \{X, \phi, A_i : i \ge 1\}$, where $A_1 = \{p\}$ and $A_{i+1} = A_i \cup \{x\}$, $x \in (X - (A_i \cup \{q\}))$.

This construction topology is a principal topology and it has the properties: 1- each open set is minimal at a point of X,

2- for each $x \in X$ there is an open set $G \in \hat{\tau}$ such that G is minimal at x and

3- let $x, y \in X$ be two distinct points and G_x , $G_y \in \hat{\tau}$ be the minimal open sets at x and y, respectively, then $G_x \neq G_y$.

THEOREM 2.6. A space $(X, \hat{\tau})$ where $\hat{\tau}$ is the above constructed topology is a minimal R_D^* -space.

PROOF. It is not difficult to show that $(X, \hat{\tau})$ is T_0 and so it is an R_D^* -space. Let τ^* be a topology on X which is weaker than $\hat{\tau}$ then there is an open set $G \in \hat{\tau}$ such that $G \notin \tau^*$. Since $G \in \hat{\tau}$, there is an open set $W \in \hat{\tau}$ such that $G \subset W$ and $W \in \tau^*$. If $G \in \hat{\tau}$ is minimal at $x_0 \in X$ and $W \in \hat{\tau}$ is minimal at $y_0 \in X$ hence $W \in \hat{\tau}$ is a minimal open set at both x_0 and y_0 , so each open set in τ^* containing x_0 contains y_0 . Therefore (X, τ^*) is not T_0 and hence it is not R_D^* . Then $(X, \hat{\tau})$ is a minimal R_D^* -space.

REMARK. It is clear that $(X, \hat{\tau})$ is a minimal T_0 -space.

3. Generalizations of some theorems in [3]

In [3, Theorem 3.2], Dube and Misra showed that if, (X, τ) is paracompact (with no separation axioms assumed) and if x is a T_2 -distinct point disjoint from a closed set F, then x and F have disjoint open neighbourhoods. This result can be considered as a special case of the following:

THEOREM 3.1. Let $A \subset X$ be any α -nearly paracompact subset and $x \in X$ be a

144

Remarks on some Localized Separation Axioms and their Implications 145

 T_2 -distinct point disjoint with A, then there exist two disjoint open neighbourhoods for x and A.

PROOF. Let $A \subset X$ be any α -nearly paracompact subset and $x \in X - A$ is T_2 -distinct point. Then $x \notin y$, for every $y \in A$. This implies that there exists an open neighbourhood U_y of y such that $x \notin \overline{U}_y$. The family $\{U_y : y \in A\}$ is an open cover of A, then there exists a X-locally finite of X-open sets $V = \{V_\beta : \beta \in j\}$ which refines $\{U_y : y \in A\}$ and such that $A \subset \bigcup \{\overline{v}_\beta^\circ : \beta \in j\}$. Let $G = \bigcup \{\overline{v}_\beta^\circ : \beta \in j\}$. Then G is an open set containing A and $x \notin G$. Therefore, there exists an open neighbourhood N_x of x intersects with a finite number members V_{β_i} , V_{β_i} , \cdots , V_{β_n} of members V. So, there exist the corresponding open neighbourhoods W_1, W_2, \cdots, W_n of x such that $W_i \cap V_{\beta_i} = \phi$, for all $i=1, 2, \cdots$, n. Let $N_x \cap (\bigcap_{i=1}^n W_i) = V_x$, so $V_x \cap V_\beta = \phi$ for all $V_\beta \in V$, then $V_x \cap \overline{V}_\beta^\circ = \phi$. This implies that $V_x \cap G = \phi$. Hence, V_x and G are two open neighbourhoods of x and A, respectively.

Dube and Misra in [3], have proved that if, in a topological space (X, τ) , an almost compact set and a T_2 -distinct point-set form a partition of X, then the almost compact set is closed. This result can be strengthed as follows:

THEOREM 3.2. If, in X, an α -almost paracompact set and a T_2 -distinct point-set form a partition of X, then the α -almost paracompact set is closed.

PROOF. Let $A = \{y_i : i \in I\}$ be an α -almost paracompact subset of X and A^c is T_2 -distinct point-set. Take any point $x \in A^c$, then $x \neq y_i$, for each $i \in I$. So, there exist two families of open neighbourhoods: $U = \{U_i : x \in U_i, i \in I\}$ and $V = \{V_i : y \in V_i, i \in I\}$ of x and y_i , respectively, such that $U_i \cap V_i = \phi$, for each $i \in I$. One may consider V as an open cover of A, and since A is α -almost paracompact, then there exists a locally finite family $H = \{V_\beta : \beta \in j\}$ of open sets refining V and $A \subset \bigcup_{\beta \in j} \overline{V}_{\beta}$. Also there exist an open neighbourhood N_x of x intersects a finite members of H, then $N_x \cap (\bigcap_{\beta \in J} U_i) = V_x$, where I_0 is a finite subset of I. This implies that $V_x \cap (\bigcup_{\beta \in j} \overline{V}_{\beta}) = \phi$, so $V_x \cap A = \phi$. Hence A is closed.

COROLLARY. If A is α -nearly paracompact, in the above theorem, then A is weakly closed.

4. New localized separation axioms

Mashhour [6], introduced and studied the separation axioms T_i' , (i=0, 1, 2) and T_1'' . The definitions of these axioms are based on those of the basic lower separation axioms. We localize some of these axioms as follows.

DEFINITION 4.1. Let (X, τ) be a topological space.

- (i) A point $x \in X$ is T_0' -distinct if, for any $y \in X$ with $y \neq x$ there exists an open neighbourhood of one of them to which the other is a boundary point.
- (ii) A point $x \in X$ is T_1' -distinct if, for any $y \in X$ with $y \neq x$, there is an open neighbourhood for one point, say x, to which y is a boundary point, and an open neighbourhood of y to which x does not belong.
- (iii) A point $x \in X$ is T_2' -distinct if, for any $y \in X$ with $y \neq x$, there exist two open neighbourhoods U and V of x and y, respectively, such that $\overline{U} \cap \overline{V} = \phi$.

THEOREM 4.1. If A is an α -nearly compact subset of X and $x \in X$ is T_2' distinct point disjoint with A, then there exist disjoint closed neighbourhoods of x and A.

PROOF. It is similar to that of Theorem 3.1.

COROLLARY. Every pair of disjoint α -nearly compact subsets, one of which consists of T_2' -distinct points has disjoint closed neighbourhoods.

THEOREM 4.2. Let (X, τ) be a topological space in which every nonempty open set is dense and $x \in X$ be T_0 -distinct point, then x is T_0' -distinct.

PROOF. Let $x \in X$ be T_0 -distinct point, then for every point $y \in X$, $y \neq x$ there exists an open neighbourhood U of one point of them which does not contain the other. Since $\overline{U} = X$, then the other is a boundary point of U. Hence, x is T_0' -distinct.

THEOREM 4.3. Let (X, τ) be a topological space, $x \in X$ be T_0' -distinct point which is also T_1 -distinct, then x is T_1' -distinct.

PROOF. Let x be T_0' -distinct point which is also T_1 -distinct, then for every $y \in X$, $y \neq x$ there exists an open neighbourhood U of one of them, say x, to which y is a boundary. Since x is T_1 -distinct and $y \neq x$, then there exists an open neighbourhood V of y which does not contain x. Hence, x is T_1' -distinct.

146

Remarks on some Localized Separation Axioms and their Implications 147

THEOREM 4.4. Let x be T_1 -distinct point in a connected topological space (X, τ) then x is T'_1 -distinct.

PROOF. Let x be T_1 -distinct point in X. For every $y \in X$, $y \neq x$, $X - \{x\}$ is an open neighbourhood of y. Since (X, τ) is connected, then $\overline{X - \{x\}} = X$. So, x is a boundary point of $X - \{x\}$. Also there exists an open neighbourhood of x which does not contain y. Hence, x is T_1' -distinct.

THEOREM 4.5. Let x be T_0 -distinct point in a regular space X, then x is T_2' -distinct.

PROOF. Let X be a regular space, x is T_0 -distinct point in X. Then, there is an open neighbourhood U of one point, say x, such that $y \notin U$. Since X is regular, then there is a weakly closed neighbourhood V of x such that $V \subset U$. Then, X-V is open neighbourhood of y and $x \notin X-V$. Since X is regular, x is T_2' -distinct.

THEOREM 4.6. Let x be T_1 -distinct point in a normal space X, then x is T_2' -distinct.

PROOF. It is similar to that of the above theorem.

Acknowledgment

The authors acknowledge their gratefulness to Professor Takashi Noiri, Yatsushiro college of Technology, for his useful suggestions and criticisms.

> Mashhour, A.S.; Hasanein, I.A.; Farrag, A.S. University of Assiut Faculty of Science Department of Mathematics ASSIUT-EGYPT

REFERENCES

- Al-Taha, S.A., Naoum, A.G., On absolutely closed spaces, Bulletin of the college of Science, University of Baghdad 15 (1974), 209-213.
- [2] Carnahan, D., Locally nearly-compact spaces, Boll. Un. Mat. Ital., (4), 6, (1972), 146-153.

- [3] Dube, K.K., Misra, D.N., Some Localized Separation axioms and their implications, period. Math. Hungar. 9(1978) no.1-2, 3-10.
- [4] _____, Some axioms weaker than the R₀-axiom, Glasnik Mat.
 Ser. Ⅲ 8(28) (1973), 145-148, MR. 48 # 1163.
- [5] Kelly, J.L., General topology, Van Nostrand, New York (1955).
- [6] Mashhour, A.S., New types of topological space, publications Math. Debrecen 17 (1970), 77-80.
- [7] Mashhour, A.S.; Mahmoud, F.S.; Fath Alla, M.A.; Hasanein, I.A.; On Some generalizations of compactness, "To appear".
- [8] Manuel P. Berri, *Minimal topological spaces*, Transaction of the Amer, Math. Soc. 108 (1963) 97-105.
- [9] Steiner, A.K., The lattice of topologies, structure and complementation, (1965) Transaction of the Amer. Math. Soc. Volume 122, Number 2, April (1966).