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MULTILATERAL GENERATING FUNCTIONS FOR THE PRODUCTS
OF HYPERGEOMETRIC POLYNOMIALS AND SEVERAL GENE-
RALIZED HYPERGEOMETRIC FUNCTIONS

By H.C. Madhekar and N.K. Thakare

1. Introduction

By exploiting the properties of the differential operator lxk-l-xkﬂ(d/dx), Patil

and Thakare [8] obtained multilateral generating functions involving both the
Konhauser Biorthogonal polynomial sets. By resorting to the same technique the
authors [7] recently obtained multilateral generating functions involving the
products of polynomials of Srivastava and Singhal [14] and several generalized
hypergeometric functions.

In this paper we obtain multilateral generating function (2.1) given below
by adopting series manipulation technique and Gauss transformation for hyper-
geometric functions. Our result is quite general in the sense that it is possible
for us to obtain multilinear generating functions involving the products of
several known polynomials including the classical orthogonal polynomials,

The detailed discussion is postponed to appropriate sections.

It may be mentioned that the main result obtained earlier by the authors [7]
is different from the one obtained here,
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where,
3
2.2) 0,=1- _}__.i'fj(yj)uj (k=1, 2, ---), m is some fixed integer; and on the
JZ

right hand we use the notation for the generalized Lauricella function of several
variables defined and studied by Srivastava and Daoust [13; p.454]; see also

Exton [4; p.109].

PROOF. Firstly let us consider the sum
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By direct computation the above expression reduces to
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Thus we obtain
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where 8, is given by (2.2).

Let S denote the left hand side of (2.1). By often used Huler iransformation,
one has,
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Using (2.3) and writing the expansion of the generalized Lauricella function
involved, we obtain
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where 6, is given by (2.2). This can be further simplified to obtain final result
2. 1.

It may be mentioned that our result generalizes the consideration of Thakare
and Karande [17].

3. Applications

(1) If we select fj(yj):m}-:h and ¢J-(yj):—yj for each j=1, 2, -, B, we
shall obtain the result (24) of Srivastava and Singhal [15, p.1244].

It may be mentioned that Srivastava and Singhal [15] obtain their result by
indicating the use of two techniques; first being the use of Laplace transform
and its inverse, and the second being the employment of differential operators.

(2) By specializing the parameters it is fairly easy to obtain a large number
of known or new multilateral/multilinear generating relations involving gener-
alized Rice polynomials, Jacobi polynomials, Laguerre pelynomials, Hermite
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polynomials, and their generalizations due to Brafman [1]: Gould-Hopper [5]
Lahiri [6]; and Bragg [2]. But we shall not state them here as most of them
are explicitly mentioned in earlier work of the authors [7]. However we shall
indicate very briefly some results which seem to be new and interesting.

By specializing the parameters one can obtain a formula containing the pro-
duct of hypergeometric polynomial and several Brafman polynomials [1] which
are given by
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Recall Gould-Hopper generalizations of the Hermite polynomials [5, p.58]
given by
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These are a particular case of Brafman polynomials.
We have, by selecting BY=C"=0, f,(y)=y; and $,(s)=h;, (=1, 2, =, &)
in (2.1) the following multilateral generating function,

nj

= —m—2n;, a; d ity “j
BGD T Dy, i e x]JEL 2y @ph) i

s M= 1

_ —a —F—m 15130503070 4me s 1, el 2 (@13
=U=-07"D,, A7 " Fyltioni e :

" “1 i, uk m,
G-10A, " kl( As ) » h"’( A ) ,);

k
(3.2) Ay=l- vy (=1, 2, <)

where

Srivastava [16] poeinted out that the polynomials H i (x) defined by Lahiri
[6] and g: (x) defined by Bragg [2] are particular cases of g;(:c, k) by showing,
H, oy @=1" gy(z, —1D=g,(ux, —1); and g} (x)=g (mz, —1).
Hence from (3.1) one can obtain corresponding formulas for the polynomials
H,, (x) and g, 0.
For Gegenbauer polynomials [9; p.280], we have
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Hence (2.1) yields as a special case
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where A, is given by (3.2); and (k)Hg") denotes a generalization of the Horn
function H,: see Exton [4, p.97].

In particular one can have a bilateral generating function in view of the
relationship [9, p.254 eq.1] in the form;
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where H, is Horn’s function; see Exton [4,p.36]. By choosing 1+a=y and
taking the limit as x—1 one can easily obtain a generating relation (8) of [9,
p-279]. Also by using the result (7) p.255 of [9] in (3.3) one can get,
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From (2.1) one can deduce,
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In particular by using the result-1 of [9, p.254], (3.6) yields,
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where p, is as given by (3.7).

By using earlier mentioned result of Rainville [9, p.255], we have from (3.6)
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In fact the relations (3.4) and (3.5), are essentially egquivalent and so also
(3.8) and (3.9), due to fairly known result,
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Also it should be noted that since,
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of formula (3.8) or (3.9). Results (3.4) and (3.5) are respectively contained in
Resulis (3.8) and (3.9); see Exton [4, p.98] for necessary formulas needed for
such reduction. Also one can easily obtain respectively the formulas (5), (29)
and (30) of Srivastava and Singhal [15] from relations (3.10), (3.8) and (3.9)

by recalling that,

- () y - ) .
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see Exton [4, p.98].

4. Other applications

Select m =1 (=1, -, B); and apply the result (2.4-4) of [3, p.28] to obtain,
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When we allow each ¢ (y J1.)—»cx:, we obtain
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Relation (4.2) contains the result (4.1) of Saran [10, p.786].

BY parameters l—bij) —#y

If summations involving n,, -, n; are absent, and x—0 in (2.1) we shall

obtain a linear function
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It may be seen that (4.3) easily follows from (2.3). Above relation is given
in Srivastava [11, p.66]; see also Srivastava [12, p.203].

One can obtain by direct computation a further generalization of above result
in the form,
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Incidently (4.4) contains the result (3.3) of Srivastava [16, p.460]. Relation
(4.4) is also to be found in Srivastava [11, p.67].
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where &,= , (n=0).
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