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THE T;-TOPOLOGY AND FAINTLY CONTINUOUS FUNCTIONS

By Paul E. Long and Larry L. Herrington

1. Imtroduction

For a topological space X and ACX, the O-closure of A is defined [9] to be
the set of all #&X such that every closed neighborhood of x intersects A non-
emptily and is denoted by Clz(A). The subset A is called G-closed if Cl,(A)=A.
In a similar manner, the G-snterior of a set ACX is defined to he the set of
all x£A for which there exists a closed neighborhood of x contained in A. The
-interior of A is denoted by Int,(A). In particular, the concept of @-closed sets
has been extensively studied by Professors Velicko [9], Dickman and Porter
[1], Joseph [3] and others, With the definition of the O-interior of a set, a
new topology will be described which is related to the semi-regular topology on
(X,T). The semi-regular topology, denoted by T, is the topology having as
its base the set of all regular-open sets in (X,7) [2, Problem 22, p.9%2]. Recall
that a set A is regular-open provided Int(CI(A4))=A. Specifically, for any set
A, Int(CI(4)) is always regular-open.

2. The Ty topology
DEFINITION 1. An open set U in (X,T) is called G-open if Int,(U)=U.

From the definition of §-closed sets, it follows that the complement of a f-open
set is (-closed and the complement of a @-closed set is G-open. According to [9],
the intersection of f-closed sets is &-closed and the finite union of &-closed sets
is a O-closed set. Therefore, arbitrary unions and finite intersections of #-open
sets are themselves G-open. Consequently, the collection of H-open sets in a to-
pological space (X,7T) form a topology T,z on X which we call the Tgtopology.
Evidently, T=T, if and only if (X,7) is regular.

THEOREM 1. [Let X be any topological space. If VCX is O-open and zEV,
then there exists @ regular-open set U such that xUCCI(U)CV.

PROOF. Since V is f-open, there exists an open set W such that x&WCCl
(W)HCV. But Int(CI(W))=U is regular-open and it follows that xcUCCI{T)CV
due to the fact that CI(W)CV.
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COROLLARY TO THEOREM 1. The set V is O-open if and only if for each
xEV there exists a vegular-open U such that xSUCCI(UICV.

Theorem 1 implies that in any topological space, TyCT,. The converse need
not he true as the next example shows.

EXAMPLE 1. The topologies T, and Ty may be different even in a completely
Hausdorff space. Let X=(0,2) be a subset of the reals R with the usual topol-

ogy. For each REN, define H,= U{k 2”25;—:_11 B 2112513— D\ n>k n evenlf
and topelogize X using the following subbasic open sets: {VCX—{1] : V open

in RIUH,UG: kEN, GCX, G open in R and contains the point 1}. Then
U=(3/4,3/2)UH, is regular-open, but not G-open. Consequently, 7 .~T.

THEOREM 2. Let ACX be O-closed and let xS A. Then there exists vegular-
open sefs which separate x and A.

PROOQF, Since X — A4 is f-open and contains x, there exists a regular-open sct
U such that x&UCCI(U)CV by Theorem 1. Now Int(CL{X-CI(U))) is nonempty,
regular-open, contains A and is disjoint from U.

A space is defined to be almosi-regular [8] if for each ¥&X and regular-closed
A not containing x, there exist disjoint open sets U and V¥V such that x&U and
ACV.

THEOREM 3. Let X be almosi-regular. Ther each regular-open set in X is
also G-open.

PROOF. Since X is almost-regular, for each regular-open V in X and xEV
there exists a regular-open U such that x&LUCCIU)ICV according to Theorem
2.2 of [3], Thus each point of V has a closed neighborhood contained in V im-
plying that V is G-open.

COROLLARY TO THEOREM 3. If (X,T) is almost-regular, then P =Ty,

PROOF. By Theorem 3, T CTyand by Theorem 1, T,CT . Therefore, T,=T o

THEOREM 4. The space (X, 1) is almost-regular if and only if =T
PROOF. If (X,T) is almost-regular, then T =T, by the Corollary to Theorem
3. Conversely, if T =Ty letV be a regular-open set in (X,7) and let x&EV,

Then V is also f-open and by Theorsm 1 there exists a regular-open set U such
that x=UCCIU)ICV. Consequently, (X,7T) is almost-regular by Theorem 2.2
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of [8].

THEOREM 5. ZLet X and ¥ be topological spaces. If UCX and VCY are
G-open, then UXV is G-open in X<Y.

PROOF. Let (x,y)EUxXV. Then there exist open sets U 1 and ¥, such that
x=U IC\CI(U )CU and yEVICCI(VI)CV because both U and V are G@-open.
Therefore, (x, y)EC](Ul)XCI(VJ):CI(UIKVI)CU x V. Consequently, each point
of UXV has a closed neighborhood contained in U XV which shows I/ XV is §-open.

THEOREM 6. Let W be O-open in the product space ]'[AX o Then each proj-
(=)
ection 11, (W) is O-open in X .

PROOF. Let y &I1,(W) and let (y,] be a point in W such that TI,(y,) =¥,

Now since W is f-open, there exists a basic open set U =Ua1><U o X XU X a#gr-{---a,
X, such that [ya} eUCCIUD=ClW , )XClW , )X xClT, ) a#ﬂ--a,X"CW'
Without loss of generality, we may assume that for some 1<j<n, a¢=c .. Thus,
3, E1LCIWICIT, )CTI, (W) so that each point of T[,(W) contains a closed

neighborhoed lying in [[ (W). It follows that I (W) is G-open.

THEOREM 7. ZLet f: X—=Y be a funciion from X onlo Y that s both open and
closed, Then [ preserves O-open sels.

PROOF. Let U be f-open in X and let y=f(U). Then there exists an x&U
such that f(x)=y and an open set U, such that xEUOCC-I(UO)CU. Therefore,
fz) =yEf(UU)Cf(Cl{UD))C F(U). Now, the fact that f is both open and closed
shows that f(U,) is an open set whose closure CKfUMNCCIS(CIT L)) =f(Cl
U,) is contained in f(U). This shows that f(U) is G-open.

THEOREM 8. [ILeg f: XF ke continucus., If VCF is G-open, then F I(V) is
G-open in X.

PROOF. Lat x=f _I(V). Then f(x)EV and there exists an open set U such
that f(x)EUCCI(U)CV because V is f-open. Thus, fo_l(U)Cf—l(Cl(U))C
f_l(V). The continuity of F then gives F YU as an open set whose closure is
contained in f—l(V) which shows that £ (V) is J-open.

3. Faintly-continuous functions

DEFINITION 2. Let X and ¥ be topological spaces. Then f: X—Y is faiuily-
contivions if for each x=X and f-open V containing f(x), there exists an open
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set U containing x such that f(U)CV.

As will be demonstrated shortly, the concept of faintly-continuous is a very
weak form of continuity. Perhaps the concept could have been better named
f-continuous, but that notation is already reserved for a different kind of non-
continuous function. (See, for example, Definition 2 of [6].)

THEOREM 9. Let f: XY be given. Then they are equivalent:
(a) f: X—(,T) is faintly-continuous.

(@) f: X, Ty is continuous.

(¢) The inverse image of each O-open set in (¥,T) is open in X.
(d) The inverse image of each G-closed set in (¥, T) is closed in X.

PROOF. The implications follow easily from the definitions.

A function f: X—>Y is called weakly-continuous [4] if for each x€X and each
open set V' containing f(x) there exists an open set U containing x such that

FOHCCIY).
THEOREM 10. If f: XY is weakly-continuous, then f is faintly-continuous.

PROOF. Let =X and let ¥V be a f-open set containing f(x). Then there
exists an open set W such that jx)SWCCI(W)CV. Now, since f is weakly-
continuous, there exists an open set U containing x such that f(U)CCI(W)
CV. Consequently f is faintly-continunus.

EXAMPLE 2. A faintly-continucus function need not be weakly-continuous.
Let X= (0,1} with topology {¢, X, {1}} and let ¥={e,b,¢] with topology 4.7,
(@), {8}, {a,b}}). Finally, let f: X—¥ be defined as f(0)=a and f(1)=b4. Then
F is not weakly-continuous at x=0, but f is faintly-continuous since the only
G-open set in ¥ is ¥ itseli.

Theorem 10 and Example 2 now allow us to see the position faintly-continuous
functions occupy among other well-known non-continuous functions, First,
however, we should recall the definitions of almost-continuity and &-continuity:
a function f : XY is almost-coniinuwous (O-continuous) if for each *&X and each
regular-open ¥ (open V) containing f(x), there exists an open U containing x
such that f(U)CV (f(CIW))CCI(V)). Now it readily follows that

continuity —almost-continuity=@-continuity >weak-continuity—faint-continuity.
These implications, aside from the last one, are explored in [6].

THEOREM 11. ZLet (Y,T) be an almost-reguler space and f: X—Y,T) a
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Sfaintly-continuous function. Then f is almost-continuous.

PROOF. Since f: X—(¥,T) is faintly-continuous, then f:X—(¥,Ty) is con-
tinuous. But (¥, T) almost-regular implies T,=T, by the Corollary to Theorem 3.
Thus, f:X—-,T,) is continuous showing that f:X—(¥,T) is almost-contin-
uous.

COROLLARY TO THEOREM 11. If (¥,T)is almost-regular and f:Y—X,T),
then they are equivalent:

(@) f is faintly-continuous.

(B) f is weakly-continuous.

(c) f is O-continuous.

(@) f is almost-continuous.

In the above Corollary, if almost-regular is replaced with regular, then we
may add continuity to the list of equivalences.

THEOREM 12, If f: XY is faintly-continuous and ACX, then f|A: A=Y
is faintly-continuous.

PROOF. Evident.

For a given f: XY, the graph map g:X—XXY is defined as glx)=(x,f
@).

THEOREM 13, [f the graph map of f: XY is faintly-continuous, then f is
Saint’y-continuous.

PROOF. Let x€X and let V be G-open in ¥ containing f(x). Then XXV is
@-open in X XY by Theorem 5 and contains g(x)=(x, f(x)). Since the graph
map g : X=X XY is faintly-continuous, there exists an open set U containing x

such that g(U)CXXV. This implies that fF(U)CV so that f is faintly-contin-
uous.

THEOREM 14. If f: XY is weakly-continuous, then the graph map g: X—
X XY is faintly-continuous.

PROOF. Let x*&X and let W be a f-open set containing g(x). Then there is
a closed neighborhood, hence a closed basic open set CI(UXV), containing g(x)
and lying inside W. Thus, g(x)=(x, f(x))eClUxV)=CIU)xCI(V) so that
f@eCl(V). Since f is weakly-continuous, there exists an open set U,CU con-
taining x such that f(U)CCI(V). Consequently, g(U)CCIU)XCI(V)CW show-
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ing g to be faintly-continuous.
3. Functions with extremely-closed graphs

DEFINITION 3, The graph G(f) of f:X—=Y is extremely-closed if for each
(x,v)&EG(F) there exists an open set U containing x and a f-open set V' con-
taining ¥ such that (UXV)ING(f)=d.

The proofs to the next two theorems follow easily from the above definition.

THEOREM 15. The graph of f: X—Y is extremely-closed if and only if for
each x&X and y#f(x) there exists an open set U containing x and a O-open set
V containing y such that f(UXNV=d.

THEOREM 16. The graph of f: X—(Y,T) is extremely-closed if and ounly if
the graph of f: X—(Y,Tp) is closed.

THEOREM 17. If f: X—(,T) is faintly-continuwous and (¥, Ty) is Hausdorff,
then [ has an extremely-closed graph.

PROOF. We know that f: X—(¥,7,) is continuous because f:X—(¥,T) is
faintly-continucus. Since Ty is Hausdorff, the graph of f: X—(¥,T,) is closed
[2, Theorem 1,5(3), p.140]. Thus, f: X—(¥,T) has an extremely-closed graph
by Theorem 16.

THEOREM 18, Let Y be completely Hausdorff and let i X—=Y be fainlly-
continuous. Then G(f) is extremely-closed.

PROOF. Let *&X and let y#f(x). Since ¥ is completely Hausdorff, there
exists a continuous g : ¥—R such that g(f(x))z2g(y). Thus, there exist open
disjoint sets W and G containing g(f(x)) and g(¥), respectively, such that g_1
W)Neg ' (G)=¢. But g ') is f-open by Theorem 8 and the fact that every
open subset of R is f-open. Therefore, there exists an open U containing x such
that f(U)Cg_l(W) so that f(U)ﬂg_](G)zgﬁ. Theorem 15 now implies that the
graph of f is extremely-closed.

The graph of f: XY is called strongly-closed [5] if for each (x, )EG()
there exist open sets U/ and V containing x and y, respectively, such that (U X

CIOING=d.

THEOREM 19. Let f: X—Y have an extremely-closed graph. Then f has a
strongly-ciosed graph.
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PROOF. Let ¥=X and y#f(x). Then by Theorem. 15, there exists an open
set U containing ¥ and a G-open set V' containing y such that f(U)NV=g.
Since V is f-open, there exists an open set ¥V such that y&V,CCI(V )CV so
that fUINCIV ) =p. It follows that the graph of f is strongly-closed by the
first Lemma of [7].

From Theorem 19 and [5] we now see the position of extremely-closed graphs
as follows:

extremely-closed graph = strongly-closed graph = closed graph. It is shown in
[5] that a closed graph need not be strongly-closed. Our last example shows
the first implication above cannot, in general, be reversed.

EXAMPLE 3. Let ¥=[0,2) and let G, be defined by

—[f 2nt1 2n—1 : .
G=U{( 2l 2oLy ) n>k nis odd), kEN.

Let H, be defined as in Example 1 and topologize ¥ using the following sub-
basic open sets: {WCY —{1}: ¥V open in R}U{H,UG: k&N, GCY, G open in R
and contains the point 1} U {G,U0 : 2.&N}. Now define f : X—¥ by f(x)=x for
all x€X where X is the space given in Example 1. Then f is continuous and
Y is Hausdorff which implies G(f) is strongly-closed by the Corollary to Theo-
rem 1 of [5]. However, the point (1,0)£G(f), but for each open U containing

1 and each G-open set ¥V containing 0, (UXVING(f)#¢. Therefore, G{f) is
not extremely-closed.

The University of Arkansas at Fayetteville and
LSU at Alexandria
U.S. A,
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