Kyungpook Math. J. Volume 22, Number 1 June, 1982

THE T_{θ} -TOPOLOGY AND FAINTLY CONTINUOUS FUNCTIONS

By Paul E. Long and Larry L. Herrington

1. Introduction

For a topological space X and $A \subset X$, the θ -closure of A is defined [9] to be the set of all $x \in X$ such that every closed neighborhood of x intersects A nonemptily and is denoted by $Cl_{\theta}(A)$. The subset A is called θ -closed if $Cl_{\theta}(A)=A$. In a similar manner, the θ -interior of a set $A \subset X$ is defined to be the set of all $x \in A$ for which there exists a closed neighborhood of x contained in A. The θ -interior of A is denoted by $\operatorname{Int}_{\theta}(A)$. In particular, the concept of θ -closed sets has been extensively studied by Professors Velicko [9], Dickman and Porter [1], Joseph [3] and others. With the definition of the θ -interior of a set, a new topology will be described which is related to the semi-regular topology on (X,T). The semi-regular topology, denoted by T_s , is the topology having as its base the set of all regular-open sets in (X,T) [2, Problem 22, p.92]. Recall that a set A is regular-open provided $\operatorname{Int}(\operatorname{Cl}(A))=A$. Specifically, for any set A, $\operatorname{Int}(\operatorname{Cl}(A))$ is always regular-open.

2. The T_{θ} -topology

DEFINITION 1. An open set U in (X, T) is called θ -open if $Int_{\theta}(U)=U$.

From the definition of θ -closed sets, it follows that the complement of a θ -open set is θ -closed and the complement of a θ -closed set is θ -open. According to [9], the intersection of θ -closed sets is θ -closed and the finite union of θ -closed sets is a θ -closed set. Therefore, arbitrary unions and finite intersections of θ -open sets are themselves θ -open. Consequently, the collection of θ -open sets in a topological space (X,T) form a topology T_{θ} on X which we call the T_{θ} -topology. Evidently, $T=T_{\theta}$ if and only if (X,T) is regular.

THEOREM 1. Let X be any topological space. If $V \subset X$ is θ -open and $x \in V$, then there exists a regular-open set U such that $x \in U \subset Cl(U) \subset V$.

PROOF. Since V is θ -open, there exists an open set W such that $x \in W \subset Cl$ (W) $\subset V$. But Int(Cl(W)) = U is regular-open and it follows that $x \in U \subset Cl(U) \subset V$ due to the fact that $Cl(W) \subset V$.

Paul E. Long and Larry L. Herrington

COROLLARY TO THEOREM 1. The set V is θ -open if and only if for each $x \in V$ there exists a regular-open U such that $x \in U \subset Cl(U) \subset V$.

Theorem 1 implies that in any topological space, $T_{\theta} \subset T_s$. The converse need not be true as the next example shows.

EXAMPLE 1. The topologies T_s and T_θ may be different even in a completely Hausdorff space. Let X = (0, 2) be a subset of the reals R with the usual topology. For each $k \in N$, define $H_k = \bigcup \left\{ \left(\frac{2n+1}{2n(n+1)}, \frac{2n-1}{2n(n-1)} \right): n > k, n \text{ even} \right\}$ and topologize X using the following subbasic open sets: $\{V \subset X - \{1\} : V \text{ open}$ in $R\} \cup \{H_k \cup G : k \in N, G \subset X, G \text{ open in } R \text{ and contains the point } 1\}$. Then $U = (3/4, 3/2) \cup H_1$ is regular-open, but not θ -open. Consequently, $T_s \neq T_{\theta}$.

THEOREM 2. Let $A \subset X$ be θ -closed and let $x \in A$. Then there exists regularopen sets which separate x and A.

PROOF. Since X - A is θ -open and contains x, there exists a regular-open set U such that $x \in U \subset Cl(U) \subset V$ by Theorem 1. Now Int(Cl(X-Cl(U))) is nonempty, regular-open, contains A and is disjoint from U.

A space is defined to be *almost-regular* [8] if for each $x \in X$ and regular-closed A not containing x, there exist disjoint open sets U and V such that $x \in U$ and $A \subset V$.

THEOREM 3. Let X be almost-regular. Then each regular-open set in X is also θ -open.

PROOF. Since X is almost-regular, for each regular-open V in X and $x \in V$ there exists a regular-open U such that $x \in U \subset Cl(U) \subset V$ according to Theorem 2.2 of [8]. Thus each point of V has a closed neighborhood contained in V implying that V is θ -open.

COROLLARY TO THEOREM 3. If (X,T) is almost-regular, then $T_s = T_{\theta}$.

PROOF. By Theorem 3, $T_s \subset T_{\theta}$ and by Theorem 1, $T_{\theta} \subset T_s$. Therefore, $T_s = T_{\theta}$.

THEOREM 4. The space (X,T) is almost-regular if and only if $T_s = T_{\theta}$.

PROOF. If (X, T) is almost-regular, then $T_s = T_{\theta}$ by the Corollary to Theorem 3. Conversely, if $T_s = T_{\theta}$, let V be a regular-open set in (X, T) and let $x \in V$. Then V is also θ -open and by Theorem 1 there exists a regular-open set U such that $x \equiv U \subset Cl(U) \subset V$. Consequently, (X, T) is almost-regular by Theorem 2.2

8

of [8].

THEOREM 5. Let X and Y be topological spaces. If $U \subset X$ and $V \subset Y$ are θ -open, then $U \times V$ is θ -open in $X \times Y$.

PROOF. Let $(x, y) \in U \times V$. Then there exist open sets U_1 and V_1 such that $x \in U_1 \subset \operatorname{Cl}(U_1) \subset U$ and $y \in V_1 \subset \operatorname{Cl}(V_1) \subset V$ because both U and V are θ -open. Therefore, $(x, y) \in \operatorname{Cl}(U_1) \times \operatorname{Cl}(V_1) = \operatorname{Cl}(U_1 \times V_1) \subset U \times V$. Consequently, each point of $U \times V$ has a closed neighborhood contained in $U \times V$ which shows $U \times V$ is θ -open.

THEOREM 6. Let W be θ -open in the product space $\prod_{\alpha \in \mathcal{A}} X_{\alpha^*}$ Then each projection $\prod_{\alpha} (W)$ is θ -open in X_{α^*}

PROOF. Let $y_{\alpha} \in \prod_{\alpha}(W)$ and let $\{y_{\alpha}\}$ be a point in W such that $\prod_{\alpha}(y_{\alpha}) = y_{\alpha}$. Now since W is θ -open, there exists a basic open set $U = U_{\alpha_1} \times U_{\alpha_3} \times \cdots \times U_{\alpha_k} \times \prod_{\alpha \neq \alpha_1 \cdots \alpha_n} X_{\alpha}$ such that $\{y_{\alpha}\} \in U \subset Cl(U) = Cl(U_{\alpha_1}) \times Cl(U_{\alpha_2}) \times \cdots \times Cl(U_{\alpha_n}) \times \prod_{\alpha \neq \alpha_1 \cdots \alpha_n} X_{\alpha} \subset W$. Without loss of generality, we may assume that for some $1 \leq j \leq n, \alpha = \alpha_j$. Thus, $y_{\alpha} \in \prod_{\alpha} Cl(U)Cl(U_{\alpha_j}) \subset \prod_{\alpha}(W)$ so that each point of $\prod_{\alpha}(W)$ contains a closed neighborhood lying in $\prod_{\alpha}(W)$. It follows that $\prod_{\alpha}(W)$ is θ -open.

THEOREM 7. Let $f: X \rightarrow Y$ be a function from X onto Y that is both open and closed. Then f preserves θ -open sets.

PROOF. Let U be θ -open in X and let $y \in f(U)$. Then there exists an $x \in U$ such that f(x) = y and an open set U_0 such that $x \in U_0 \subset \operatorname{Cl}(U_0) \subset U$. Therefore, $f(x) = y \in f(U_0) \subset f(\operatorname{Cl}(U_0)) \subset f(U)$. Now, the fact that f is both open and closed shows that $f(U_0)$ is an open set whose closure $\operatorname{Cl}(f(U_0)) \subset \operatorname{Cl}(f(\operatorname{Cl}(U_0))) = f(\operatorname{Cl}(U_0))$ is contained in f(U). This shows that f(U) is θ -open.

THEOREM 8. Let $f: X \rightarrow Y$ be continuous. If $V \subset Y$ is θ -open, then $f^{-1}(V)$ is θ -open in X.

PROOF. Let $x \in f^{-1}(V)$. Then $f(x) \in V$ and there exists an open set U such that $f(x) \in U \subset \operatorname{Cl}(U) \subset V$ because V is θ -open. Thus, $x \in f^{-1}(U) \subset f^{-1}(\operatorname{Cl}(U)) \subset f^{-1}(V)$. The continuity of f then gives $f^{-1}(U)$ as an open set whose closure is contained in $f^{-1}(V)$ which shows that $f^{-1}(V)$ is θ -open.

3. Faintly-continuous functions

DEFINITION 2. Let X and Y be topological spaces. Then $f: X \to Y$ is faintlycontinuous if for each $x \in X$ and θ -open V containing f(x), there exists an open set U containing x such that $f(U) \subset V$.

As will be demonstrated shortly, the concept of faintly-continuous is a very weak form of continuity. Perhaps the concept could have been better named θ -continuous, but that notation is already reserved for a different kind of non-continuous function. (See, for example, Definition 2 of [6].)

THEOREM 9. Let $f: X \rightarrow Y$ be given. Then they are equivalent:

(a) $f: X \rightarrow (Y, T)$ is faintly-continuous.

(b) $f: X \to (Y, T_{\theta})$ is continuous.

(c) The inverse image of each θ -open set in (Y,T) is open in X.

(d) The inverse image of each θ -closed set in (Y,T) is closed in X.

PROOF. The implications follow easily from the definitions.

A function $f: X \to Y$ is called *weakly-continuous* [4] if for each $x \in X$ and each open set V containing f(x) there exists an open set U containing x such that $f(U) \subset Cl(V)$.

THEOREM 10. If $f: X \rightarrow Y$ is weakly-continuous, then f is faintly-continuous.

PROOF. Let $x \in X$ and let V be a θ -open set containing f(x). Then there exists an open set W such that $f(x) \in W \subset Cl(W) \subset V$. Now, since f is weakly-continuous, there exists an open set U containing x such that $f(U) \subset Cl(W) \subset V$. Consequently f is faintly-continuous.

EXAMPLE 2. A faintly-continuous function need not be weakly-continuous. Let $X = \{0, 1\}$ with topology $\{\phi, X, \{1\}\}$ and let $Y = \{a, b, c\}$ with topology $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$. Finally, let $f: X \rightarrow Y$ be defined as f(0) = a and f(1) = b. Then f is not weakly-continuous at x = 0, but f is faintly-continuous since the only θ -open set in Y is Y itself.

Theorem 10 and Example 2 now allow us to see the position faintly-continuous functions occupy among other well-known non-continuous functions. First, however, we should recall the definitions of almost-continuity and θ -continuity: a function $f: X \rightarrow Y$ is almost-continuous (θ -continuous) if for each $x \in X$ and each regular-open V (open V) containing f(x), there exists an open U containing x such that $f(U) \subset V$ ($f(Cl(U)) \subset Cl(V)$). Now it readily follows that

continuity \Rightarrow almost-continuity \Rightarrow θ -continuity \Rightarrow weak-continuity \Rightarrow faint-continuity. These implications, aside from the last one, are explored in [6].

THEOREM 11. Let (Y,T) be an almost-regular space and $f: X \rightarrow (Y,T)$ a

10

faintly-continuous function. Then f is almost-continuous.

PROOF. Since $f: X \to (Y, T)$ is faintly-continuous, then $f: X \to (Y, T_{\theta})$ is continuous. But (Y, T) almost-regular implies $T_{\theta} = T_s$ by the Corollary to Theorem 3. Thus, $f: X \to (Y, T_s)$ is continuous showing that $f: X \to (Y, T)$ is almost-continuous.

COROLLARY TO THEOREM 11. If (Y, T) is almost-regular and $f: Y \rightarrow (Y, T)$, then they are equivalent:

- (a) f is faintly-continuous.
- (b) f is weakly-continuous.
- (c) f is θ -continuous.
- (d) f is almost-continuous.

In the above Corollary, if almost-regular is replaced with regular, then we may add continuity to the list of equivalences.

THEOREM 12. If $f: X \rightarrow Y$ is faintly-continuous and $A \subset X$, then $f|A: A \rightarrow Y$ is faintly-continuous.

PROOF. Evident.

For a given $f: X \rightarrow Y$, the graph map $g: X \rightarrow X \times Y$ is defined as g(x) = (x, f(x)).

THEOREM 13. If the graph map of $f: X \rightarrow Y$ is faintly-continuous, then f is faintly-continuous.

PROOF. Let $x \in X$ and let V be θ -open in Y containing f(x). Then $X \times V$ is θ -open in $X \times Y$ by Theorem 5 and contains g(x) = (x, f(x)). Since the graph map $g: X \to X \times Y$ is faintly-continuous, there exists an open set U containing x such that $g(U) \subset X \times V$. This implies that $f(U) \subset V$ so that f is faintly-continuous.

THEOREM 14. If $f: X \rightarrow Y$ is weakly-continuous, then the graph map $g: X \rightarrow X \times Y$ is faintly-continuous.

PROOF. Let $x \in X$ and let W be a θ -open set containing g(x). Then there is a closed neighborhood, hence a closed basic open set $\operatorname{Cl}(U \times V)$, containing g(x)and lying inside W. Thus, $g(x) = (x, f(x)) \in \operatorname{Cl}(U \times V) = \operatorname{Cl}(U) \times \operatorname{Cl}(V)$ so that $f(x) \in \operatorname{Cl}(V)$. Since f is weakly-continuous, there exists an open set $U_0 \subset U$ containing x such that $f(U_0) \subset \operatorname{Cl}(V)$. Consequently, $g(U_0) \subset \operatorname{Cl}(U) \times \operatorname{Cl}(V) \subset W$ showing g to be faintly-continuous.

3. Functions with extremely-closed graphs

DEFINITION 3. The graph G(f) of $f: X \to Y$ is extremely-closed if for each $(x, y) \notin G(f)$ there exists an open set U containing x and a θ -open set V containing y such that $(U \times V) \cap G(f) = \phi$.

The proofs to the next two theorems follow easily from the above definition.

THEOREM 15. The graph of $f: X \rightarrow Y$ is extremely-closed if and only if for each $x \in X$ and $y \neq f(x)$ there exists an open set U containing x and a θ -open set V containing y such that $f(U) \cap V = \phi$.

THEOREM 16. The graph of $f: X \to (Y, T)$ is extremely-closed if and only if the graph of $f: X \to (Y, T_{\theta})$ is closed.

THEOREM 17. If $f: X \to (Y, T)$ is faintly-continuous and (Y, T_{θ}) is Hausdorff, then f has an extremely-closed graph.

PROOF. We know that $f: X \to (Y, T_{\theta})$ is continuous because $f: X \to (Y, T)$ is faintly-continuous. Since T_{θ} is Hausdorff, the graph of $f: X \to (Y, T_{\theta})$ is closed [2, Theorem 1,5(3), p.140]. Thus, $f: X \to (Y, T)$ has an extremely-closed graph by Theorem 16.

THEOREM 18. Let Y be completely Hausdorff and let $f: X \rightarrow Y$ be faintlycontinuous. Then G(f) is extremely-closed.

PROOF. Let $x \in X$ and let $y \neq f(x)$. Since Y is completely Hausdorff, there exists a continuous $g: Y \to R$ such that $g(f(x)) \neq g(y)$. Thus, there exist open disjoint sets W and G containing g(f(x)) and g(y), respectively, such that $g^{-1}(W) \cap g^{-1}(G) = \phi$. But $g^{-1}(W)$ is θ -open by Theorem 8 and the fact that every open subset of R is θ -open. Therefore, there exists an open U containing x such that $f(U) \subset g^{-1}(W)$ so that $f(U) \cap g^{-1}(G) = \phi$. Theorem 15 now implies that the graph of f is extremely-closed.

The graph of $f: X \to Y$ is called *strongly-closed* [5] if for each $(x, y) \notin G(f)$ there exist open sets U and V containing x and y, respectively, such that $(U \times Cl(V)) \cap G(f) = \phi$.

THEOREM 19. Let $f: X \rightarrow Y$ have an extremely-closed graph. Then f has a strongly-closed graph.

12

The T_e-topology and Faintly Continuous Functions

PROOF. Let $x \in X$ and $y \neq f(x)$. Then by Theorem 15, there exists an open set U containing x and a θ -open set V containing y such that $f(U) \cap V = \phi$. Since V is θ -open, there exists an open set V_0 such that $y \in V_0 \subset \operatorname{Cl}(V_0) \subset V$ so that $f(U) \cap \operatorname{Cl}(V_0) = \phi$. It follows that the graph of f is strongly-closed by the first Lemma of [7].

From Theorem 19 and [5] we now see the position of extremely-closed graphs as follows:

extremely-closed graph \Rightarrow strongly-closed graph \Rightarrow closed graph. It is shown in [5] that a closed graph need not be strongly-closed. Our last example shows the first implication above cannot, in general, be reversed.

EXAMPLE 3. Let Y = [0, 2) and let G_k be defined by

$$G_k = \bigcup \left\{ \left(\frac{2n+1}{2n(n+1)}, \frac{2n-1}{2n(n-1)} \right) : n > k, n \text{ is odd} \right\}, k \in \mathbb{N}.$$

Let H_k be defined as in Example 1 and topologize Y using the following subbasic open sets: $\{V \subset Y - \{1\} : V \text{ open in } R\} \cup \{H_k \cup G : k \in N, G \subset Y, G \text{ open in } R \text{ and contains the point } 1\} \cup \{G_k \cup 0 : k \in N\}$. Now define $f : X \to Y$ by f(x) = x for all $x \in X$ where X is the space given in Example 1. Then f is continuous and Y is Hausdorff which implies G(f) is strongly-closed by the Corollary to Theorem 1 of [5]. However, the point $(1,0) \notin G(f)$, but for each open U containing 1 and each θ -open set V containing 0, $(U \times V) \cap G(f) \neq \phi$. Therefore, G(f) is not extremely-closed.

> The University of Arkansas at Fayetteville and LSU at Alexandria U.S.A.

REFERENCES

 R.F. Dickman and Jack R. Porter, θ-closed subsets of Hausdorff spaces, Pacific J. of Math. Vol. 59(2) 1975, pp.407-415.

[2] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.

[3] James E. Joseph, On H-closed spaces, Proc. of the Amer. Math. Soc. Vol. 55(1) 1976, pp. 223-226.

 [4] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961) pp. 44-46.

Paul E. Long and Larry L. Herrington

- [5] Paul E. Long and Larry L. Herrington, Functions with strongly-closed graphs, Boll. U. M. I. (Italy) (4) 12 (1975) pp. 381-384.
- [6] T. Noiri, Between continuity and weak-continuity, Boll. U. M. I. (Italy) 9 (1974) pp. 647 -654.
- [7] T. Noiri, On functions with strongly-closed graphs, Acta Math. 32 (1978) pp. 1-4.
- [8] M.K. Singal and S.P. Arya, On almost-regular spaces, Glasnik Mat. Ser. II 4 (24) 1969, pp. 89-99.
- [9] N. V. Velicko, *H-closed topological spaces*, Mat. Sb. 70 (112) 1966, pp.98-112 or Amer. Math. Soc. Transalations 78 (2) 1968, pp.103-118.