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0. Introduction

In his classical paper [22], Zadeh first introduced the fundamental concept
of fuzzy sets. An immediate application of this idea can be found in the
theory of general topology. Since fuzzy sets as introduced by Zadeh have
the same kind of operations as set operation in general topology. It is,
therefore, natural to extend the concept of point set topology to fuzzy sets,
resulting in a theory of fuzzy topology. In the development of a parallel the-
ory based on fuzzy sets, many interesting phenomena have been observed
[1] [6] [11] [19-21]. Specially, one notices many differences between the
two theories. A good example is the Tychonoff theorem in general topology:
Any product of compact spaces is compact. Its fuzzy counterpart holds only
for finite products. Since this approach to compactness in fuzzy spaces have
serious limitations, various definitions of compactness in fuzzy spaces have
been introduced.

Specially the authors in [5] proposed a new definition of compactness in
fuzzy space. Also they defined the point-dependent Hausdorff separation
axiom in fuzzy spaces. Rodabough [14] gave more general definition
of Hausdorff separation axiom. Since many concepts and definitions in fuzzy
topological spaces have not yet taken the their final forms, in this paper,
we adopt Rodabough’s approach to the theory of fuzzy topological spaces.

On the other hand, the systematic study of bitopolgical spaces [a set on
which are defined two topologies] was begun by Kelly [8], who introduced
various separation properties into bitopological spaces, and obtained genera-
lizations of some important classical results. Also various other authors have
contributed to the development of the theory([2] [4] [10] [12] [179).

The purpose of this paper is to introduce the concept of fuzzy bitopological
space, and to study some properties of fuzzy bitopological space.

In section II, we deal with some characferizations of pairwise a-compact fbs.
In section III, we give the definition of some separation axiom of fbs and
characterize some property of fbs satisfying the given separation axiom.

In section IV, we give the definition of pairwise a-connectivity in a fbs
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and characterize some elementary property of pairwise a-connected space.
In section V, we deal with the product theorem of a fbs.

For definitions and notations concerning bitopological and fuzzy topological
spaces which are not explained in this paper, the reader is referred to [1-2],
[4-6], [17], [19-21].

1. Preliminary

In this section, we introduce some basic terminologies and definitions for
the further study. We will let I denote the closed unit interval [0, 1] of the
real line; in its natural order, I is a completely distributive lattice with
order reversing involution defined by ¢'=1—a[e=I]. Given an [ordinary]
nonempty set X, the fuzzy sets of X are just the elements of I%, i.e., the
functions from X into I. The crisp subset of X are just the {0, 1} -valued
functions on X, i.e. the characteristic functions of the subsets of X (We
will identify a subset of X with the associated crisp subset of X). If a&1.
then a is the constant function from X to I whose value is a.

By a fuzzy torology on a set X we mean a subset T JX such that (1) 0,
1€%. (2) z, v€T=>u/\vET and (3) ¢G>V 9p<ET. Here, z/\v and are
defined by (u/\v) (z)=inf {u(z), v(z)}, Vo(z)=sup {s(z) : s€¢}, for
each z€X. And #\/v and/\¢ are similarly defined. A base for a fuzzy
topology @ on a set X is a collection £ such that, for each 2€T there
exists £,C& with «=\/&,; and a subbase for G is a collection ¢ such
that {s;\.../A\s,;2EN and s, ..., 5,€0} U {1} is a base for G. Any collection
@ IX is a subbase for a unique fuzzy topology T (p) on X; we say that
T (p) is generated by ¢. By a fuzzy space we mean a pair (X, T), where
X is a set and T is a fuzzy topology on X. The elements of @ are called
the open fuzzy sets of X, and their complements #/, where 4’ (z)=1—u(2),
are called the closed fuzzy sets of X. As in general topology, the indiscrete
fuzzy topology contains only 0 and 1, while the discrete fuzzy topology
contains all fuzzy sets. If A is a subset of X, and if T is a fuzzy topology
on X, then the the set of restrictions G,= {u|A4 : «T} is a fuzzy topology
on A, and we say that (4, T,) is a subspace of (X, G). If (X, P) and
(Y, Q)are two fuzzy spaces, then a map f: X—Y is F-continuous if f~!
(v) P for v€Q, where f1(v) () =v(f(z)), for all z&X.

The following definitions are useful in this paper.

1.1 DerFINITION [14] If AcX, z€X is an a-cluster point of A for a
(€[0,1) if for each 2T such that z(z)>a, a/A\u(A— {z})>0 where
¢(A) is the characteristic function for A. The a-closure of A is the union
of A with the set of its a—cluster points and is denoted by Cl,(4).
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The set A is a-closed if Cl,(A) CA. Hence A is a-closed iff for each
zE€X—A there is 2T such that 2(z) >a and zA\p(A)=0.

1.2 DerNITION [14] (X, @) has the a-property if {ACX : A is a—closed}
=[{zeX : u(z) <a}, u=G]. The left collection is always contained in the
right collection. (X, ©) has the a—property iff for each z€X and for each
#<T such that u(x)>a, there is v&T such that v(z)>a and »(y)=0 for
each yeX such that z(y) <a.

1.3 DermNTION [5] (X, ©) is a—compact if each a—shading of X (a collec-
tion % —J such that for each z X, there is «€% such that #(z)>a) has a
finite a-subshading of X.

For the remainder of this paper, we always assume @ <1 when considering
“‘a-anything”. Let{X;}, i€#, be a family of sets. Let X=T;., X; be the
usual product set, and let p; be the projection from X onto X;.

Further assume that each X; is a fuzzy topological space with fuzzy topology
¥;. Let BET;, p;t (B) is a fuzzy set in X. The family of fuzzy sets S=
{:71(B)|BET;, i€} is now used to generate a fuzzy topology @ for X
in the following manner. Let &£ be the family of all finite meets of members
of S. Let T be the family of all joins of members of £ It is clear that G
is indeed a fuzzy topology for X, with £ as a base and S a subbase.

1.4 DerFmNITION Given a family of fuzzy topological spaces {(X;, G;), i€
A}, the fuzzy topology defined as above is called the product fuzzy topology
for X= _Trﬂ X; and (X, @) is called the product fuzzy topologiacl space.

1.5 DEFINITION A space X on which are defined two (arbitrary) fuzzy
topologies P and @ is called a fuzzy bitopological space, or fbs for short,
and denoted by (X, P,Q).

1.6 DErFmNITION A function f mapping a fbs (X, P, @) into a fbs (X¥, P¥,
Q*) will be said to be pairwise F-continuous iff the induced mappings
f:(X,P)—(X* P*) and f:(X,Q)—(X* Q*) of the fuzzy topological
spaces are F-continuous.

II. Pairwise a-compactness
An a-shading % of the fbs (X, P, Q) is a collection %< P Q such that for
each z€X, there is 2% such that z(z)>a.

2.1. DEFINITION An a-shading % of the fés (X, P,Q) is called pairwise
a-shading if ¥ contains at least one member «({z : u(z)>a} %x¢) of P and
at least one member v({z : v(z) >a} #¢ of Q
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2.2 DEFINITION A fbs (X,P,Q) is called pairwise a@-compact if every
pairwise a-shading of (X, P, Q@) has a finite a—subshading.

2.3 DeFmITION A fbs (X, P, Q) has the a-property if both (X, P) and
(X, @) have the a-property.

To obtain two characterizations of pairwise a—compactness, we need
the notion of adjoint fuzzy topology similar to adjoint topology which was
introduced by Kim[10]. If & is a fuzzy topology on X and a4 is a fuzzy
set (not 0) of X, then ¥(a) is the fuzzy topology on X given by G(a)=
{0, 1} U {aVu : «<T}.

2.1 TueoreM If (X, P,Q) is a fbs, then the conditions below are related
as follows. (a) implies (8), and (b) implies (¢). If (X, P,Q) has the a-
property, then (a), () and (c) are equivalent.

(a) (X, P,Q) is pairwise a—compact.

(b) For each fuzzy set (mot 0) a in P, the fuzzy space (X,Q(a)) is a—
compact and for each fuzzy set (not 0) a in Q, the fuzzy space
(X, P (a)) is a-compact.

(¢) Each P-a-closed proper subset is @Q-a-compact and each Q-a-closed
proper subset is P-a—compact.

(Where P-a-closed set, Q—a-compact set denote the a—closed set in
(X, P) and a-compact set in (X, Q) respectively)

Proof. (a) = (b). Let a be any open fuzzy set (not 0) in (X. P),and % be
an a-shading of (X, Q(a)), so U= {aVu; : icd} where u;=Q for eachicg.
Then the collection {a} U {u; : i€4} is a pairwise a-shading of (X, P, Q)
and so has a finite a-subshading which we denote by {a} U {»; ; i=1,2, ....n}.
We add {a} to the a-subshading if necessary. Then {2V, :i=1,2,..., 1}
is the desired finite a-subhading of % for (X,Q(a)), so that the fuzzy
space (X, Q(a)) is a-compact. Similarily, the fuzzy space (X, P(a)) is
a-compact for each open fuzzy set 2 (not 0) in (X, Q).

(b) = (¢). Let K be any proper P-a-closed subset. Since K is a—closed,
for each z&X—K, there is u,€P such that u,(z)>a and u,A\p(X)=0.
Put =\ u,, then «€P and «(z) >a for any z€X—K. Let {u; : i€} be

zeX—K
an a-shading of K in (X,Q). Then the collection {#\/u;:i€4} is an a-
shading of (X, Q(«)), so the collection {#\/u;:ic4} has a finite a-
subshading {u\/#%; : i=1, ..., n} of (X, Q(u)). Since «/\p(K)=0, the collection
{u; 1 i=1, ...,n} is a finite a-subshading of K, so that K is a—compact in
(X, Q). Similarily, each @-a—closed proper subset is a—-compact in (X, P).
I (X,P,Q) has the a-property (¢) = (a). Let % be a pairwise a-shading
of (X,P,Q), let the P open fuzzy sets in % be {u;: ic#}, and let the @
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open fuzzy set in % be {v;:j€«}. Two cases arise.

(i) {wj:i€A}is a-shading of (X, Q). Choose a iy&& such that u;,({z: u;,
(z)>a} x¢) since (X, P,Q) has the a-property, the set {z :#;, (z)<a} is
P-a—-closed proper subset. Then the collection {v; : j&4} is an a-shading of
the set {z : u;0(z) <a}, so there is a finite a-subshading {v; : j=1,...,m} of
the set {z : u;p(z) <a}. Then {u;, vy, ...,v,} is a finite a-subshading of %
for (X,P,Q).

(ii) {v; :j€A} is not a-shading of (X, Q). Then the set K= {z : /e\ﬂvj(x) <

a} is a @-a—closed proper subset and f{u; :i€4&} is an a-shading of K.
Hence there is a finite a-subshading {x; : i=1....,2} of K. If {u; : i=1, ...,
n} is an a-shading of (X, P), there is nothing more to prove. If {%; : i=1,
...,n} is not an a-shading of (X, P), then {z: _\Zui (z) <a} is a p-a—closed
proper subset and {v; :jE4} is an a-shading of {z: \7u,~(x) <a}. By
=1,
hypothesis, there is a finite a-shading {v; : i=1, ..., p} of {z: Ve;(z) <a}.
i=1

Then {u;:i=1,...,n} U {v; : =1, ...,p} is the required finite a-subshading
of U for (X, P,Q).

As is shown by the following example, the hypothesis that (X, P,Q) has
the a-property is non-superfluous in the above theorem.

ExaMPLE In this example we assume a>0. Let X={z;, z3, 3, ...} be

a countable set. Let wu; : X— I such that u;(z;) >a, #(z; =%—, and for

J=2u; : X — I such that u;(z,)=0, u;(z;)>a, uj(xk)::% when j¥k, Let
vg 1 X— I such that v;(z3)>a, vy(z;) =% and for j+2 v; : X — I such that

v (x2) =0, v; (xk)=%—, v;j(z;)>a. Let P and @ be the fuzzy topologies gen-
erated by {#;, up, ...} and {vy, vy, ...}, then it is clear that the f&s (X, P, Q)
has not the a-property.

Also we can easily see that {z;} and {z,} are the only a—closed non-empty
proper subset in (X, P) and (X,Q). Hencelz;} is a-compact in (X, Q) and
{z} is a-compact in (X, P). But the pairwise a-shading {uy,vs, u3, vy, ...}
for (X, P,Q@) has not a finite a-subshading.

2.2 THEOREM The pairwise F-continuous image of pairwise a—-compact fbs
is pairwise a-compact.

Proof. Suppose (X, Ty, ) is pairwise a—compact, let f: (X, Gy, Gy) — (X*,
G,*, G5*) be a pairwise F-continuous and let {#;} be a pairwise a-shading
Of f(X) in (X*9 1*9 r62*)-
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Then f-1(z;) is a pairwise a-shading of (X, Gy, ;) and so by the pairwise
a-compactness of (X, Ty, T,). It follows that there is a finite a-subshading
of (X, G, Tp), say f 1 (1), ..., f~1(u,). The corresponding family {u;, #s,
.-ey #,} then forms the required finite a-subshading of the {«}.

III. Separation axioms of fuzzy bitopological spaces

In this section, we give the definition of some separation axiom of fbs
and characterize some property of fbs satisfying the given separation axiom.

3.1. DermuTioN The fbs (X, P, Q) is called pairwise a-T; if for every
pair of distinct points z, y€X, there is u€P or v&Q such that z(z)>a,
u(y) =0 or v(z) >a, v(y)=0.

3. 2. DermNITION The fbs (X, P,Q) is called pairwise a-Hausdorff if
for every pair of distinct points z,yEX, there is u€P, v&€Q such that
u(zx)>a, v(y)>a, and u/\v=0 and there is «’€Q, v/ &P such that ' (z)>
a, 7 Fy)>a, o N\v=0.

3.3. DermniTioN The £bs (X, P, Q) is called pairwise a-regular if it sati
sfies the following:

i) for each point z&€X and each P-a-closed set A such that z& A, there
is € P, v=@Q such that () >a. v(A)>a, and wNAv=0.

ii) for each point z€X and each Q-a-closed set A such that x& A, there
is # €P, v'<Q such that ¢/ (z)>a, #'(A)>a, and & N7 =0.

3.4. DermnNiTiION The f3s (X, P,Q) is called pairwise a-normal if given
a P-a—closed set A and a Q-a—closed set B such that ANB=¢, there is u&
P,veQ such that «(B)>a, v(A)>a and zA\v=0.

3.1. THEOREM The following statements are eguivalent.

(a) (X, P,Q) is pairwise a-T,.

(b) P-Cl, {z} NQ-Cl,{x} ={a} for each z€X.

(©) [N{zlu(z)>0} : u(z)>a, 2P} NN {zlv(z) >0} : v(x) >a, vEQ}]
= {z} for each z€X.

Proof. (a) > (8). For any y&X such that z=y, from the assumption,
there is u€ P or v such that z2(y)>a, a(z)=0 or v(y)>a, »(z)=0.
Hence we have y& P-Cl, {z} or y&@Q-Cl,{z}. Thus y& P-Cl,{z} N Q-Cl, {z}.

(b) > (©). ¥ yxz,y[N {zla(zx) >0} : u(z)>a, «€PIN[N {=lv(zx)>0}
tp(z)>a, vEQ] then ye[N{zlu(z)>0l: z(z)>a, z€P] and y&
[N {zlv (2)>0} : v(z)>a, v=Q]. From the definition of a-closure z&
P-Cl,{y} and z€Q-Cl.{y}, hence z=P-Cl {y} NQ-Cl.{y}. This is a

contradiction.
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(c) > (a). It is clear from the definition of a-cluster point.

3.2. THEOREM The following statements are equivalent.

(a) (X, P,Q) is pairwise a-Hausdorff.

(b) For x, y=X such that x5y, there is uS P such that u(z) >a, u(y)=0
and y&Q-Cl, {z:u(z)>0} : also there is vEQ such that v(y) >a,
v(z) =0 and z&P-Cl, {z:v(2)>0}.

(c) For each z=X, N{Q-Cl{zlu(z)>0} : u(z)>a, &P} = {2} =
N {P-Cl, {z]lv()>0} : v(z)>a, vEQ}.

(d) The diagonal A= {(z, z):zE€X\ is a-closed in (XXX,PXQ) and
(XXX, QXP).

Proof. (a)=>(b). For z, yEX such that zxy, there is u€P, v&€Q such
that «(z) >a, v(y)>a and z/A\v=0.
v(y)>a implies #(y)=0. Also z/\v=0 implies v(z) =0 for 2€ {z : u(2) >0}
hence v(y) >« implies y is not Q-a-cluster point of the set {z: #(z)>0}.

Similarily there is €@ such that v(y) >a, v(z)=0and z&P—Cl,{z : v(z)
>01.

(b)=>(c). It is clear.

(©)=>(d). Let (z,y) €EXXX—4, we have u€P, vEQ such that 2(2)>a,
v(z)>a, and y&@Q-Cl,{zlu(2)>0} y&P—Cl, {z|v(2)>>0}, and hence we
have v’ &P such that o' () >a and v'Ap{z : v(2) >0} =0. Let f=p,"1(x) A\
57 1(') where p; and p, are projections, then we have f(z, y)>a and
FAr(4)=0, therefore 4 is a-closed in (XXX, QXUP).

(d)=>(a). Let z, y& X such that z#y. Since 4 is a—closed in (XXX, PXQ)
and (XXX, @XP), there is an open fuzzy set z, in (XXX, PXQ) such
that u,(z, y)>a and u,/A\u(4)=0. Hence there is u€P, vEQ such that
u,=py @) Np (@) and  [p7U(w) Ap2t(v)](z, y)>a. Then for each
(z, z) € duy(z, z) Zu(z) N\v(z) implies # A\v=0 and we have that «(z)>a
and v(y) >a.

In an ordinary topology, it is well known that a compact set in a
Hausdorff space is closed. In a fbs, we have the similar results.

3.3. THEOREM Suppose a fbs (X, P,Q) is pairwise a—Hausdor(f, then every
P-a—compact set is Q-a—closed and every Q-a—compact set is P-a~closed.

Proof. Let A be a P-a—compact set and let peX-A. Since (X, P, Q) is
pairwise a~Hausdorff, for each z€ A, there is »,€P, »,€Q such that u,
(z2)>a, v.(p)>a and u,\v,=0. Since U= {u.|z=A} is an a-shadihg of

A, there is a finite a~subshading {u,;, #.9, ..., #,,} of 4. If ”=.\Z #y; and v
= Z\l""ﬁ then v=Q. Since zA\v=0. v(p) >andv(4)=0. Thus A is Q-a-closed.



20 Jaeseok Jeon

Similarily every Q-a-compact set is P-a—closed.

3.4. THEOREM If o fbs (X, P, Q) is pairwise a—compact and pairwise a-
Hausdorff then (X, P,Q) has the a—property.

Proof. It suffices to show that (X, P) has the a-property, thatis, for any
#<P the set A={z: u(z) <a} is P-a—closed. Let p=X~A. Since (X, P, Q)
is pairwise a-Hausdorff, for any r€ A, there is 4,€P, v,€Q such that «,
(p)>a, v.(z)>a and u,N\v,=0. Since U= {v,: z<A}l U {u} is a pairwise
a-shading of (X, P,Q), there is a finite @-subshading {v,, ..., vz U {u} of

9. If w=_/_n\lu1,. and v=_\_2v,,. then wEP, w(p)>a and w(A)=0. Thus A is

P-a—closed.
The converse of the above theorem is not true, as is shown by the
following example.

ExaMPLE Let P and Q be the discrete fuzzy space and the indiscrete fuzzy
space on a set X. Then it is clear that a fbs (X, P,Q) has the a-property
since (X, P) and (X, Q) have the a-property. But (X, P, Q) is not pairwise
a-Hausdorff.

3.5. THEOREM If a fbs (X, P,Q) is pairwise a—Hausdorff and pairwise
a-compact then (X, P, Q) is pairwise a—regular.

Proof. Let C be a P-a—closed subset and let p£C. Since (X, P, Q) is
pairwise a~Hausdorff, for each z=C there is u,€P, v,€Q such that =.(p)
>a, v.(z)>a and 2,N\v,=0. Now U= {v.|z€C} is a Q-a-shading of C.
Thus, by theorem 2. 1, there is a finite a-subshading {v., ..., v, of %

If u==_/:\1uz,- and v=\n/v,,- then z€P, v€Q, u(p)>a, v(C)>a and u\o=0.

i=1

3.6. TurOREM If a fbs (X, P, Q) is pairwise a—-Hausdorlf and pairwise
compact then(X, P, Q) is pairwise a—normal.

Proof. Let H be a P-a-closed set and K be a Q-a—cloeased set such
that HN K=¢. For each z&K, there is »,€P, v,£Q such that z,(z)>a,
v,(H)>a and u,/\v,=0.

Since %= {u.lz=K} is an a-shading of K, by theorem 2.1, there is a
finite ;a-subshading {51, +ees 2omt Of U. If u=i\Zun- and v= /’\-ox,- then «< P,

v€Qs 8(K)>a, v(H)>a and u \ov=0.

IV. Pairwise a-connectivity

Rodabough (15) introduced a-connectivity in a fuzzy space, slmilarily we
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define pairwise a-connectivity in a fbs and characterize some elementary
property of pairwise a—connected space.

4.1. DEFINITION A fbs (X, P, Q) is called pairwise a—connected if there is
not z€P, veQ and », ve£ {0, 1} such that on X, #\/v>>a and z/\v=0.
If BcX and (X,P,Q) is a fbs, then B is pairwise a~connected if B is
pairwise a-connected in the fuzzy subspace (B, P/B,Q/B).

4.1. TuroreM Let (X, P,Q) be a tbs. Then the following statements hold.

(a) Countable unions of pairwise intersecting pairwise a-connected sets are
pairwise a—connected.

(b) (X,P,Q) is pairwise a—connected iff there is not a non—empty proper
subset A of X such that A is P-oa—closed and X-A is Q-a-closed
respectively.

(c) Suppose A is pairwise a—connected. Then B is pairwise a—connected if
AcBc P-Cl,(4) NQ-Cl, (4).

Proof. (a) It suffices to show that C=AU B is pairwise a-connected if A

and B are pairwise a-connected and AN B=¢.
Suppose C is not pairwise a—connected, then there is 2 P/C, »€Q/C, and
u, v& {0/C, 1/C} such that «\/v>>a and #/A\v=0 on C. It follows by case
work that either each of #/A, v/A is not in {0/A, 1/A} or each of u/B,
v/B is not in {0/B, 1/B}. If the latter holds, («/B\/v/B)>a and «/BA
v/B=0. This is a contradiction. Hence C is pairwise a—connected.

(b) Let (X, P,Q) be pairwise a-connected. If there is a non-empty proper
subset A of X such that A is P-a—closed and X-A is Q-a—closed respectively,
then that A and X-A are P-a—closed and Q-a—closed respectively implies
that for each z€ A4, y=X-A there is u,€P, v,€Q such that u,(y)>a,
u,/A=0 and v,(z)>a, v,/X-A=0. Let u=\/g,,, v'—*-;/Av,. It follows that

yeX—.
uEP, v=Q, u\/v>a and /\v=0 on X. This is a contradiction.

Conversely, if (X, P,Q) is not pairwise a—connected, then there is € P,
2€Q such that z\/v>a, 2/ \v=0 and =, v {0,1}. So A={z : u(z)>a} and
B={z : v(z)>a}are non-empty proper X-a—closed and P-a-closed subsets
such that B=X-A respectively. This is a contradiction.

(¢) To show this, we need only consider Ax¢, ASB. If B is not pairwise
a—connected, it follows there is u P, v X such that either Ac {z : u(z)>
al and (B-A)Niz:v(@>a}l+¢ or AC{z:v(@)>al and B-A)N{z:«
(z)>a=¢. This contradicts the assumption that B P-Cl, (4) NQ-Cl.(4).

It is clear from the above theorem that a pairwise a-connected subset is
contained in a maximal pairwise a-connected subsets which we shall call
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the pairwise a—component of the space. The next theorem is a generalization
of the fact that the components of an ordinary topological space are closed.

4.2. THEOREM Any pairwise a—component C o fa fbs (X, P, Q) satisfies the
equation C=P-Cl,(C) UQ-Cl, (C).

Proof. Let C be a pairwise a—component and suppose that p&C, then CU
{#} is not pairwise a-connected. Hence there is =P, v<Q such that #\/
v>a, u/\v=0 on CU {p} and »/CU {p}, »/CU {#} € {0/CU {5}, 1/CU {8}}
Thus either C< {z : #(z)>a} and »(p)>a or C< {z : v(z) Da} and u(p) >
a. Hence either p& P-Cl,(C) or p2Q-CL.(C).

This is equivalent to saying that p& P-Cl.(C) NQ-Cl,(C) and so we have
P-ClL,(C) NQ-Cl,(C)=C. Clearly CcP-Cl,(C) NQ-CL,(C), and the equation

is satisfied.
4.3. THEOREM pairwise F-continuity preserves pairwise a—connectivity.

Proof. The assertion follows from the fact that if £: X—Y and « is a fuzzy
set in Y then f1(x) (z)=u(f(z)).

V. Product of fuzzy bitopological spaces

Let (X;, P;,Q;) be any family of fuzzy topological spaces. We construct
in a natural way two fuzzy topologies on the cartesian product TX;. Let P
be the fuzzy product topology on T X; determined by the p;’s, that is,
having as a subbase the family of all fuzzy sets of the form p,"1(G) where
i is any index and GEP;. Let @ be the fuzzy product topology on TX;
determined by the Q;’s. The resulting fbs (T X;, P, Q) will be called the
fuzzy product bitopological space generated by the family {(X;, P;, Q,)}.

The following results are presented without proof, as they are immediate
consequence of the definition.

5.1. TuroreM Let (X, P;, Q;) be an arbitrary family of fuzzy bitopological
spaces. Then for each fixed k, the projection map p, : (T X, P, Q) — (X, Py,
Q.) is a pairwise F-continuous surjection.

5.2. THEOREM Let {(X;, P; Q;)} be any family of fuzzy bitopological spaces
and let f : (¥;0,,05) — (TX;, P, Q) be any map. Then f is pairwise F~continuous
if Piof is pairwise F-continuous for each k.

The following three theorems are generalizations of known classical results.

5.3. THEOREM Let {X;, pi, Q:)} be a family of non—empty fuzzy bitopological
spaces. Then (TX;, P,Q) is pairwise a-Hausdorlf iff (X, P;, Q;) is pairwise
a—Hausdorff for each i.
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Proof. Suppose each (X;, P;, Q;) is pairwise a—Hausdorff. Let {z;} and {y;}
be two distinet point in X;. Then there is % such that z;=+y, Since (X,
Py, Q) is pairwise a-Hausdorff, there is € P;, vEQ; such that #(z;) >a,
v(y)>a and zAv=0. Then p,'(x) ({z})>a, £7'() ({y})>a and
27 1(#) N\ 371 (v) =0. Hence (T X,, P, Q) is pairwise a—Hausdorff. Conversely,
suppose (T X;, P, Q) is pairwise a—Hausdorff. Let z,, ;€ X, such that z,+
v; and let X=Xz{z;:i#k. Then z=mrlx;:i+k} *yriz; i+k}=y.
Since a subspace of a pairwise a-Hausdorff fbs is again pairwise a—Hausdorff.
Now (X, P/X, Q/X) is pairwise a-Hausdorff implies that there is z€P/X,
v€Q/X such that 2(z)>a, v(y)>a and 2/Av=0. Note that « and v are
each of the form \/74 {[p-/l‘l(u-rl)/\--‘/\?ru_l(u'ru)] : uriEPria T T2 ‘“Tne#}
and VE&{[ps! @) AeeeN\bow™ Wom)] : v5:E Qs 01, 02...0,E &} and note if
any 7;+k and 9;%%, then p;1(s,;)and p5; ! (vs;) are constant on X. thus
u2py ! (wp) Nk, v2p 1 (vp) koo where , €P;, v, €Qp, [ p271 () Nby] ()
>a and [ ;7 (v) Nk](3)>a. Since BN\ >0, 0= uNv=py  (uN\vp) N\
(ky/\ky) implies Py 1(uz/\vz) =0, so w/N\vp=0. Also p,71(»;) (z)>a and
271 () () >a so uy(xy) >a and vy (y) >a. Hence (X, P, Q;) is pairwise
a-Hausdorff space.

5.4. THEROREM If (X, P;, Q;) is a family of fuzzy bitopological spaces such
that (TX;, P,Q) is pairwise a—compact, then each (X;, P; Q;) is pairwise a-
compact.

Proof. It is clear from theorem 2. 2.

The converse of the above theorem, namely that the product of any family
of pairwise a-compact fuzzy bitopological spaces, is again pairwise a—compact
would be a generalization of Tychonoff’s product theorem. But this is not
the case as the following example shows.

ExamMpLE Let X; (=1, 2) be a countable set : X;= {1, z,, z3,...}. Let P
and @ be the discrete fuzzy space and indiscrete fuzzy space. Then fbs (X,
P,Q) and fbs (X, Q, P) are pairwise a—compact since every pairwise a-
shading must contain the fuzzy set 1. Let #;, v;€P be the fuzzy open sets
defined as follows. w;(z;) >a, #;(z;)=0 i+i, v;(z;)>a, v;(z;)=0i+j. Then
the pairwise a-shading {p," (), 17! (22), ..., p27*v1), po(w), ...} of
(X; XX, PXQ, QXP) does not have a finite a-subshading, Therefore
(X, XX, PXQ, QXP) is not pairwise @—compact.

5.5. THEOREM Let {X;, P;, Q,)} be any family of fuzzy bitopological spaces.
Then (T X;, P, Q) is pairwise a—connected iff eachk (X, P, Q;) is pairwise a-
connected.
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Proof. Suppose (T X; P,Q) is pairwise a—connected. Then the projection
b (TX;, P, Q) — (X3, P, Q) is a pairwise F-~continuous surjection. Thus
by theorem 4.3. (X, P;, @) is pairwise a—connected for each 2. Conversely,
if z={z;} and y={y,} differ by at most finitely many coordinates, then z
and y lie in a pairwise a-connected fuzzy subspace of (T X;, P, @); this
follows by induction on theorem 4.1. and the fact that fuzzy injections
preserve pairwise a-connectivity. Futhermore, given z= {z;}, then P-Cl,(D)
=TX,;=Q-Cl,(D) where D={y={y;}; z and y differ by at most finitely
many coordinates}. To show this, let z& TX; and let 2P such that »(z)

>a, then there are 74, ..., 7, such that «> Z\l £, (w,;) and /j\1 Py () (2)

>a where u,;€p,; for each 7. Let y= {y;} be chosen such that y,==z, for

each i and y,=z, otherwise. Then y&D and u(y) > /{f,,-(u,,-) (y)= /'l\u,i(zri)
i= i=1

- /\1 2,7 1(n,;) (2) >a>0, hence z P-Cl, (D).

Similarily, we have z=@-Cl,(D), therefore T X;=P-Cl,(D) N @-Cl (D).
The theorem follows from theorem 4. 1.
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