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SOME PROPERTIES OF FUZZY TOPOLOGICAL SPACES

BY JAESEOK JEON

O. Introduction

In his classical paper [22J, Zadeh first introduced the fundamental concept
of fuzzy sets. An immediate application of this idea can be found in the
theory of general topology. Since fuzzy sets as introduced by Zadeh have
the same kind of operations as set operation in general topology. It is,
therefore. natural to extend the concept of point set topology to fuzzy sets,
resulting in a theory of fuzzy topology. In the development of a parallel the­
ory based on fuzzy sets, many interesting phenomena have been observed
[lJ [6J [l1J [19-21J. Specially, one notices many differences between the
two theories. A good example is the Tychonoff theorem in general topology:
Any product of compact spaces is compact. Its fuzzy counterpart holds only
for finite products. Since this approach to compactness in fuzzy spaces have
serious limitations, various definitions of compactness in fuzzy spaces have
been introduced.

Specially the authors in [5J proposed a new definition of compactness in
fuzzy space. Also they defined the point-dependent Hausdorff separation
axiom in fuzzy spaces. Rodabough [14J gave more general definition
of Hausdorff separation axiom. Since many concepts and definitions in fuzzy
topological spaces have not yet taken the their final forms, in this paper,
we adopt Rodabough's approach to the theory of fuzzy topological spaces.

On the other hand, the systematic study of bitopolgical spaces [a set on
which are defined two topologiesJ was begun by KeIly [8J, who introduced
various separation properties into bitopological spaces, and obtained genera­
lizations of some important classical results. Also various other authors have
contributed to the development of the theory([2J [4J [10J [12J [17J).

The purpose of this paper is to introduce the concept of fuzzy hitopological
space, and to study some properties,of fuzzy bitopologicaI space.
In section H, we deal with some characterizations of pairwise a-compact fbs.
In section IIl, we give the definition of some separation axiom of fbs and
characterize some property of fbs satisfying the given separation axiom.
In section IV, we give the definition of pairwise a-connectivity in a fbs
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and characterize some elementary property of pairwise a-connected space.
In section V, we deal with the product theorem of a fbs.
For definitions and notations concerning bitopological and fuzzy topological
spaces which are not explained in this paper, the reader is referred to [1-2J,
[4-6J, [17J, [19-21J.

I. Preliminary

In this section, we introduce some basic terminologies and definitions for
the further study. We will let I denote the closed unit interval [0, 1J of the
real line; in its natural order, I is a completely distributive lattice with
order reversing involution defined by a' = 1-a[a E I]. Given an [ordinaryJ
nonempty set X, the fuzzy sets of X are just the elements of IX, i. e., the
functions from X into 1. The crisp subset of X are just the to, I} -valued
functions on X, i. e. the characteristic functions of the subsets of X (We
will identify a subset of X with the associated crisp subset of X). If aEI.
then a is the constant function from X to I whose value is a.

By a fuzzy topology on a set X we mean a subset 7gep such that (1) 0,
lE79. (2) u, vE79=>ul\vE79 and (3) q;e79=>Vq;E79. Here, ul\v and are
defined by (ul\v) (x) =inf {u(x), v(x)} , Vq;(x) =sup {s(x): sEq;} , for
each xEX. And uVv andl\q; are similarly defined. A base for a fuzzy
topology 79 on a set X is a collection t€e7O such that, for each uE79 there
exists t€uct€ with u= V t€u; and a subbase for 70 is a collection q;e7O such
that {sll\ ...l\s,.;nEN and Sb ••• , S,.Eq;} U {ll is a base for 70. Any collection
q;cP is a subbase for a unique fuzzy topology T(rp) on X; we say that
T(rp) is generated by rp. By a fuzzy space we mean a pair (X, (0), where
X is a set and 70 is a fuzzy topology on X. The elements of 79 are called
the open fuzzy sets of X, and their complements u', where u' (x) = 1- u (x),
are called the closed fuzzy sets of X. As in general topology, the indiscrete
fuzzy topology contains only 0 and 1, while the discrete fuzzy topology
contains all fuzzy sets. If A is a subset of X, and if 79 is a fuzzy topology
on X, then the the set of restrictions 7OA= {ulA : uE70} is a fuzzy topology
on A, and we say that (A, 79A) is a subspace of (X, 70). If (X, P) and
(Y, Q) are two fuzzy spaces, then a map f : X---'> Y is F-continuous if 1-1
(v)EP for vEQ, where/-1(v)(x)=v(f(x», for all xEX.

The following definitions are useful in this paper.

1. 1 DEFINITION [l4J If A e X, x E X is an a-cluster point of A for a
(E[O,l) if for each uE79 such that u(x»a, ul\f.l(A-{x})~O where
f.l (A) is the characteristic function for A. The a-closure of A is the union
of A with the set of its «-cluster points and is denoted by Cl.. (A).



Some properties of fuzzy topological spaces 15

The set A is a-closed if Cia (A) cA. Hence A is a-closed iff for each
xEX-A there is uE<P such that u(x»a and uA.u(A)=O.

1.2 DEFINITION [14J (X, 76) has the a-property if {AcX: A is a-closed}
=[ {xEX: u(x) :s:a}, uE'W]. The left collection is always contained in the
right collection. (X, <p) has the a-property iff for each xE X and for each
uE<P such that u(x»a, there is vE<P such that v(x»a and v(y) =0 for
each yEX such that u(y) :S:a.

1. 3 DEFINITION [5J (X, <p) is a-compact if each a-shading of X (a collec­
tion flt c'J such that for each x E X, there is uE flt such that u(x) >a) has a
finite a-subshading of X.

For the remainder of this paper, we always assume a <1 when considering
"a-anything". Let {Xi}, i E 13, be a family of sets. Let X = 1f iEfI Xi be the
usual product set, and let Pi be the projection from X onto Xi'

Further assume that each Xi is a fuzzy topological space with fuzzy topology
(Oi' Let BE<Pi' A-I (B) is a fuzzy set in X. The family of fuzzy sets S=
{Pi- l (B) IBE70i , iEfJ} is now used to generate a fuzzy topology 76 for X
in the following manner. Let 16 be the family of all finite meets of members
of S. Let 70 be the family of all joins of members of pg. It is clear that 70
is indeed a fuzzy topology for X, with pg as a base and S a subbase.

1. 4 DEFINITION Given a family of fuzzy topological spaces {(Xi, <Pi)' i E

fJ}, the fuzzy topology defined as above is called the product fuzzy topology
for X = 1f Xi and (X, (0) is called the product fuzzy topologiacl space.

'EII

l. 5 DEFINITION A space X on which are defined two (arbitrary) fuzzy
topologies P and Q is called a fuzzy bitopological space, or fbs for short,
and denoted by (X, P, Q).

1.6 DEFINITION A function f mapping afbs (X,P,Q) into afbs (X*, P*,
Q*) will be said to be pairwise F-continuous iff the induced mappings
f: (X, P)-(X*, P*) and f: (X, Q)-(X*, Q*) of the fuzzy topological
spaces are F-continuous.

11. Pairwise a-compactness

An a-shading flt of the fbs (X, P, Q) is a collection fltcP UQ such that for
each xEX, there is uEflt such that u(x»a.

2.1. DEFINITION An a-shading flt of the fbs (X, P, Q) is called pairwise
a-shading if flt contains at least one member u( {x: u(x»a} :3;:1» of P and
at least one member v( {x: v(x»a} =/=1> of Q
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2. 2 DEFINITION A fbs (X, P, Q) is called pairwise a-compact if every
pairwise a-shading of (X, P, Q) has a fullte a-subshading.

2.3 DEFINITION A fbs (X, P, Q) has the a-property if both (X, P) and
(X, Q) have the a-property.

To obtain two characterizations of pairwise a-compactness, we need
the notion of adjoint fuzzy topology similar to adjoint topology which was
introduced by Kim[10]. If ~ is a fuzzy topology on X and a is a fuzzy
set (not 0) of X, then w(a) is the fuzzy topology on X given by w(a) =

to, I} U {aVu : uEW}.

2.1 THEOREM If (X, P, Q) is a fbs, then the conditions below are related
as follows. (a) implies (b), and (b) implies (c). If (X, P, Q) has the a­
property, then (a), (b) and (c) are equivalent.

(a) (X, P, Q) is pairwise a-compact.
(b) For each fuzzy set (not 0) a in P, the fuzzy space (X, Q (a» is a­

compact and for each fuzzy set (not 0) a in Q, the fuzzy space
(X, P (a» is a-compact.

(c) Each P-a-closed proper subset is Q-a-compact and each Q-a-closed
proper subset is P-a-compact.
(Where P-a-closed set, Q-a-compact set denote the a-closed set in
(X, P) and a-compact set in (X, Q) respectively)

Proof. (a) => (b). Let a be any open fuzzy set (not 0) in (X. P), and 1/ be
an a-shading of (X, Q(a», so U= {aVu; : iE,4} where u;EQ for each iE,4.
Then the collection {a} U {Ut : iEri} is a pairwise a-shading of (X, P, Q)
and so has a finite a-subshading which we denote by {a} U {Ut ; i=l, 2, n}.
We add {a} to the a-subshading if necessary. Then {aVui : i=l, 2, , n}
is the desired finite a-subhading of U for (X, Q(a», so that the fuzzy
space (X, Q(a» is a-compact. Similarily, the fuzzy space (X, P(a» is
a-compact for each open fuzzy set a (not 0) in (X, Q).

(b) => (c). Let K be any proper P-a-closed subset. Since K is a-closed,
for each xEX-K, there is u",EP such that u",(x»a and u:J:!\f.t(K) =0.
Put u=Vu"" then uEP and u(x»a for any xEX-K. Let {u;: iEiJ} be

xEX-K

an a-shading of Kin (X,Q). Then the collection {uVu;: iEiJ} is an a­
shading of (X, Q(u», so the collection {UVUi: iEt1} has a finite a­
subshading {uVu;: i=1, .•.,n} of (X,Q(u». Since u!\f.t(K) =0, the collection
{u. : i=1, ... , n} is a finite a-subshading of K, so that K is a-compact in
(X, Q). Similarily, each Q-a-closed proper subset is a-compact in (X. P).
1£ (X, P, Q) has the a-property (c) => (a). Let U be a pairwise a-shading
of (X, P, Q), let the P open fuzzy sets in 1/ be {u;: iEt€}, and let the Q
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open fuzzy set in ru be {Vj: j E r1}. Two cases arise.
(i) {Vj: jEr3}is a-shading of (X, Q). Choose a ioEt€ such that Uio( {x: Uio
(x»a} ~ifJ) since (X, P, Q) has the a-property, the set {x: Uio (x) ~a} is
P-a-closed proper subset. Then the collection {Vj : j E r1} is an a-shading of
the set {x : u;o(.x) ~a}, so there is a finite a-subshading {Vj: j=l, .•. , m} of
the set {x: u;o(x) ~a}. Then {UiO, Vlo ••• , vm} is a finite a-subshading of ru
for (X, P, Q).
(ii) {Vj: jEr3} is not a-shading of (X, Q). Then the set K= {x : f\Vj(x) ~

jEf1

a} is a Q-a-c1osed proper subset and {u;: iEdS} is an a-shading of K.
Hence there is a finite a-subshading {u;: i=1. ... , n} of K. If {Ut : i=l, ...,
n} is an a-shading of (X, P), there is nothing more to prove. If {Ui : i=l,

... , n} is not an a-shading of (X, P), then {x: Vu;(x) ~a} is a p-a-closed
i=1

proper subset and {Vj: jEr3} is an a-shading of {x: Vu; (x) ~a}. By
i=1 "

hypothesis, there is a finite a-shading {v;: i=l, ...,p} of {x: Vu; (x) :=;a}.
i=1

Then {u;: i= 1, ..., n} U {Vj : j = 1, ..., p} is the required finite a-subshading
of ru for (X, P, Q).

As is shown by the following example, the hypothesis that (X, P, Q) has
the a-property is non-superfluous in the above theorem.

EXAMPLE In this example we assume a>O. Let X= {Xl> X2' X3, •••} be

a countable set. Let UI: X----'> I such that UI (Xl) >a, UI (Xi) = ~, and for

j~2uj : X ----'> I such that Uj(XI) =0, Uj(xj»a, Uj(Xk) = ~ when j=t=k, Let
a I

V2: X----'> I such that V2 (X2) >a, V2(X;) =2 and for j=l=2 Vj : X ----'> I such that

Vj (X2) =0, Vj (Xk) = ~, Vj (Xj) >a. Let P and Q be the fuzzy topologies gen­

erated by {u!> Uz, ••• } and {VI> Vz, ••• }, then it is clear that the fbs (X, P, Q)
has not the a-property.

Also we can easily see that {Xl} and {X2} are the only a-closed non-empty
proper subset in eX, P) and (X, Q). Hence {Xl} is a-compact in (X, Q) and
{X2} is a-compact in eX, P). But the pairwise a-shading {Uh V2, Us, V4, •••}
for (X, P, Q) has not a finite a-subshading.

2. 2 THEOREM The pairwise F-continuous image of pairwise a-compact fbs
is pairwise a-compact.

Proof. Suppose (X, (Oh (92) is pairwise a-compact, let!: (X, 191> (02) ----'> (X*,
(01*' (02*) be a pairwise F-continuous and let tu;} be a pairwise a-shading
of f(X) in (X*, (01*,192*),
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Then f-1(u;) is a pairwise a-shading of (X, 76b 762) and so by the pairwise
a-compactness of (X, 76b 762). It follows that there is a finite a-subshading
of (X, 76b 762), say f-1 (U1), ••• , f- 1 (un). The corresponding family tUb U2,

•••, un} then forms the required finite a-subshading of the {U;}.

UI. Separation axioms of fuzzy bitopologieal spaees

In this section, we give the definition of some separation axiom of fbs
and characterize some property of fbs satisfying the given separation axiom.

3.1. DEFINITION The fbs (X, P, Q) is called pairwise a-T1 if for every
pair of distinct points x, yEX, there is uEP or vEQ such that u (x) >a,
u(y) =0 or v(x»a, v(y) =0.

3.2. DEFINITION The fbs (X, P, Q) is called pairwise a-Hausdorff if
for every pair of distinct points x,yEX, there is uEP, vEQ such that•
u(x»a, v (y)>a, and ul\v=O and there is u'EQ, v'EP such that u'(x»
a, v' (*y) >a, u'1\v' =0.

3.3. DEFINITION The fbs (X, P, Q) is called pairwise a-regular if it sati
sfies the following:

i) for each point xE X and each P-a-closed set A such that xE5;A, there
is uEP, vEQ such that u(x»a. v(A»a, and ul\v=O.

ii) for each point xEX and each Q-a-closed set A such that xE5;A, there
is u'EP, v'EQ such that v'(x»a, u'(A»a, and tt'1\v' =0.

3.4. DEFINITION The fbs (X, P, Q) is called pairwise a-normal if given
a P-a-closed set A and a Q-a-closed set B such that An B=1', there is uE
P,vEQ such that u(B»a, v(A»a and ul\v=O.

3. 1. THEOREM The following statements are equivalent.
(a) (X, P, Q) is pairwise a-T1•

(b) P-Cla{x} nQ-Cla{x} = {x} for each xEX.
(c) [n {xlu(z»Ol : u(x»a, uEP} n [n {zlv(z»O} : v(x»a, vEQ} ]

= {x} for each xE X.

Proof. (a) =? (b). For any yEX such that x=l=y, from the assumption,
there is uEP or vEQ such that u(y) >a, u(x) =0 or v (y)>a, v (x) =0.
Hence we have yE5;p-Cla {x} or ye.;:Q-Cla {x}. Thus yE5;P-Cla {x} nQ-Cla {x}.

(b) => (c). If y:\=x,yE[n {xlu(z»O} : u(x»a, UEP]n[n {zlv(z»O}
: v(x»a, vEQ] then yE [n {zlu(z»O}: u (x) >a, uEPJ and yE
[n {zlv (z»O} : v(3;»a, vEQJ. From the definition of a-closure xE
P-CI.. {y} and xEQ-Gla {y}, hence xE P-C!a {y} n Q-CI", {y}. This is a
contradiction.
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(c) => (a). It is clear from the definition of a-cluster point.
3.2. THEOREM The jolluwing statements are equivalent.
(a) (X, P, Q) is pairwise a-Hausdorff.
(b) For x, yEX such that x::\=y, there is uEP such that u(x»a, u(y)=O

and y6;Q-CI", {z: u(z»O} : also there is vEQ such that v(y»a,
v (x) =0 and x$ P-CI", {z: v(z) >O}.

(c) For each xEX, n {Q-CI",{zlu(z»O} : u(x»a, UEP} = {x} =
n {P-CI", {zlv(z»O} : v(x»a, vEQ}.

(d) The diagonal LI= {(x, x): xEXI is a-closed in (XXX, PXQ) and
(XXX, QXP).

Proof. (a) => (b). For x, yEX such that x"'fy, there is UEP, vEQ such
that u(x»a, v(y»a and ul\v=O.
v(y»a implies u(y)=O. Also ul\v=O implies v(z) =0 for zE {z: u(z»O}
hence v(y»a implies y is not Q-a-cluster point of the set {z: u(z»O}.

SimiIariIy there is vEQ such that v(y) >a, v (x) =0 and xG:P-CI", {z : v(z)
>O}.

(b) => (c). It is clear.
(c) => (d). Let (x,y)EXXX-Ll, we have uEP, vEQ such that u(x»a,

v(x»a, and YG:Q-CI", {zlu(z»O} YG:P-CI", {zlv(z»O} , and hence we
have v'EP such that v'(y»a and v'l\lt{z : v(z»O} =0. Let j=Pl-l(V) 1\
P2-1 (V') where PI and P2 are projections, then we have f(x, y»a and
fl\f.l(LI) =0, therefore LI is a-closed in (XXX, QXP).

(d)=:>(a). Let x, yEXsuchthatx::\=y. SinceLl is a-closed in (XXX,PXQ)
and (XXX, QXP), there is an open fuzzy set U4 in (XXX, PXQ) such
that U4(X, y»a and u41\f.l(LI) =0. Hence there is uEP, vEQ such that
U4?:.PI-1(U)I\P2- 1 (v) and [PI-1(u) I\P2-1 (v)] (x, y»a. Then for each
(z,z)EL1uAz, z)?:.u(z)l\v(z) implies ul\v=O and we have that u(x»a
and v(y»a.

In an ordinary topology, it is well known that a compact set in a
Hausdorff space is closed. In a fbs, we have the similar results.

3.3. THEOREM Suppose a fbs (X, P, Q) is pairwise a-Hausdorff, then every
P-a-compact set is Q-a-closed and every Q-a-compaet set is P-a-closed.

Proof. Let A be a P-a-compact set and let pEX-A. Since (X, P, Q) is
pairwise a-Hausdorff, for each xEA, there is uzEP, vzEQ such that Uz
(x»a, vz(p»a and uzl\vz=O. Since 'It= {uzlxEA} is an a-shading of

A, there is a finite a-subshading {Uzb Uz2, .••, uzn} of 'It. H u=V U:ri and v
;=1

= AVzi then vEQ. Since ul\v=O. v(p) >andv(A) =0. Thus A is Q-a-cIosed.
i:;;;:l
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Similarily every Q-a-compact set is P-a-c1osed.

3.4. THEOREM If a fbs (X, P, Q) is pairwise a-compact and pairwise a­
Hausdorff then (X, P, Q) has the a-Property.

Proof. It suffices to show that (X, P) has the a-property, that is, for any
uEP the set A= {x : u(x) ~a} is P-a-closed. Let pEX-A. Since (X, P, Q)
is pairwise a-Hausdorff, for any xEA, there is uxEP, vxEQ such that Uz
(p»a, 'Ox(x»a and uz/\'Ox=O. Since rtt= {'Ox: xEA} U {u} is a pairwise
a-shading of (X, P, Q), there is a :finite a-subshading {'Oz !> •••, v.xn} U {u} of.. ..
rtt. If w=/\UXi and 'O=V'OXi then wEP, w(p»a and w(A) =0. Thus A is

i=1 i=1

P-a-closed.

The converse of the above theorem IS not true, as is shown by the

following example.

EXAMPLE Let P and Q be the discrete fu zzy space and the indiscrete fuzzy
space on a set X. Then it is clear that a fbs (X, P, Q) has the a-property
since (X, P) and (X, Q) have the a-property. But (X, P, Q) is not pairwise
a-Hausdorff.

3. 5. THEOREM If a fbs (X, P, Q) is pairwise a-Hausdorff and pairwise
a-compact then (X, P, Q) is pairwise a-regular.

Proof. Let C be a P-a-closed subset and let P$.C. Since (X, P, Q) is
pairwise a-Hausdorff, for each xEC there is uxEP, 'OxEQ such that ux(p)
>a, 'Ox(x»a and uz/\'Ox=O. Now rtt= {'OxlxEC} is a Q-a-shading of C.
Thus, by theorem 2. 1, there is a finite a-subshading {VXh •••, vxn} of rtt.

.. ..
If U=/\Uzi and 'O=V'Ozi then uEP, 'OEQ. u(p»a, 'O(C»a and u/\v=O.

i=l i=1

3.6. THEOREM If a fbs (X, P, Q) is pairwise a-Hausdorff and pairwise
compact then (X, P, Q) is pairwise a-normal.

Proof. Let H be a P-a-closed set and K be a Q-a-cloeased set such
that HnK=ifJ. For each xEK, there is uxEP. 'OxEQ such that ux(x»a,
vz(H)>a and ux/\'Ox=O.

Since rtt= {uzlxEK} is an a-shading of K, by theorem 2.1, there is a

:finite a-subshading lux!> .••, uzn} of rtt. If u=VUXi and '0= AVXi then uE P,
; ;=1 ;=1

vEQf u(K»a, 'O(H»a and u/\'O=O.

IV. Pairwise a-connectivity

Rodabough (15) introduced a-connectivity in a fuzzy space, slmilarily we



Some properties of fuzzy topological spaces 21

define pairwise a-connectivity in a fbs and characterize some elementary
property of pairwise a-connected space.

4. 1. DEFINITION A fbs (X, P, Q) is called pairwise a-connected if there is
not uEP, vEQ and u, v$. to, I} such that on X, uVv>a and u/\v=O.
If BcX and (X, P, Q) is a fbs, then B is pairwise a-connected if B is
pairwise a-connected in the fuzzy subspace (B, PIB, QIB).

4. 1. THEOREM Let (X, P, Q) be a fbs. Then the following statements hold.
(a) Countable unions of pairwise intersecting pairwise a-connected sets are

pairwise a-connected.
(b) (X, P, Q) is pairwise a-connected iff there is not a non-empty proper

subset A of X such that A is P-a-closed and X-A is Q-a-closed
respectively.

(c) Suppose A is pairwise a-connected. Then B is pairwise a-connected if
AcBcP-Cla(A) nQ-ClaCA).

Proof. (a) It suffices to show that C=A UB is pairwise a-connected if A
and Bare pairwise a-connected and A nB::f:1'.
Suppose C is not pairwise a-connected, then there is uEPIC, vEQ/C, and
u, v$. {O/C, lIC} such that uVv>a and u/\v=O on C. It follows by case
work that either each of ulA, viA is not in {OlA, 1/A} or each of u/B,
vlB is not in {O/B, l/B}. If the latter holds, (u/BVv/B»a and u/B/\
v IB = O. This is a contradiction. Hence C is pairwise a-connected.

(b) Let (X, P, Q) be pairwise a-connected. If there is a non-empty proper
subset A of X such that A is P-a-closed and X-A is Q-a-closed respectively,
then that A and X-A are P-a-closed and Q-a-closed respectively implies
that for each xEA, yEX-A there is uyEP, vxEQ such that u,,(y»a,
uylA=O and vxCx»a, vx/X-A=O. Let u=Vuy, v=Vvx- It follows that

yEX-A "'EA

uEP, vEQ, uVv>a and u/\v=O on X. This is a contradiction.
Conversely, if (X, P, Q) is not pairwise a-connected, then there is uEP,

vEQ such that uVv>a, u/\v=O and u, v$. to, I}. So A= {x: u(x»a} and
B= {x: v(x»a} are non-empty proper X-a-closed and P-a-closed subsets
such that B=X-A respectively. This is a contradiction.

(c) To show this, we need only consider A~c/J, A~B. If B is not pairwise
a-connected, it follows there is uEP, vEX such that either Ac {x : u(x»
a} and (B-A) n Ix: v(x»a}::f:c/J or Ac {x: v(x»a} and (B-A) n {x: u
(x»a::f:l'. This contradicts the assumption that BcP-Cla CA) nQ-CI... (A).

It is clear from the above theorem that a pairwise a-connected subset is
contained in a maximal pairwise a-connected subsets which we shall call
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the pairwise a-component of the space. The next theorem is a generalization
of the fact that the components of an ordinary topological space are closed.

4.2. THEOREM Any pairwise a-component C 0 fafbs (X, P, Q) satisfies the
equation C= P-Cla(C) UQ-Cla (C).

Proof. Let C be a pairwise a-component and suppose that P$:C, then C U
{p} is not pairwise a-connected. Hence there is uEP, vEQ such thatuV
v>a, uAv=O on C U {p} and ulC U {p}, vlC U {p} $: {O/C U {p}, lIC U {p}}
Thus either Cc {x: u(x»a} and v(p»a or Cc {x: vex) :::Ja} and u(p»
a. Hence either pt$P-Cla(C) or Pt$Q-ela(C).
This is equivalent to saying that p $ P-Cla(C) nQ-Cla (C) and so we have
P-Cla(C) nQ-elaCC) cC. Clearly CcP-ClaCC) nQ-Cla(C), and the equation
is satisfied.

4.3. THEOREM pairwise F-continuity preserves pairwise a-connectivity.

Proof. The assertion follows from the fact that if f : X-4Y and u is a fuzzy
set in Y then f-1(u) (x)=u(J(x».

V. Product of fuzzy bitopologieal spaces

Let (Xi, Pi' Qi) be any family of fuzzy topological spaces. We construct
in a natural way two fuzzy topologies on the cartesian product IfXi. Let P
be the fuzzy product topology on IfXi determined by the p/s, that is,
having as a subbase the family of all fuzzy sets of the form Pi-1 (G) where
i is any index and GEPi. Let Q be the fuzzy product topology on IfXi
determined by the Q/s. The resulting fbs (If Xi' P, Q) will be called the
fuzzy product bitopological space generated by the family {(Xi' Pi. Qi) }.

The following results are presented without proof, as they are immediate
consequence of the definition.

5. 1. THEOREM Let (Xi. Pi' Qi) be an arbitrary family of fuzzy bitopological
spaces. Then for each fixed k. the projection map h : (If Xi, P, Q) -4 (X", P",
Q,,) is a pairwise F-continuous surjection.

5. 2. THEOREM Let {(Xi, Pi' Qi)} be any family of fuzzy bitopological spaces
and let f: (Y;1h,102) -4 Crr Xi,P, Q) be any map. Then f is pairwise F-continuous
if! hof is pairwise F-continuous for each k.

The following three theorems are generalizations of known classical results.

5.3. THEOREM Let {Xi' Pi, Qi)} be a family of non-empty fuzzy bitopological
spaces. Then CIfXi' P, Q) is pairwise a-Hausdorf! if! (Xi' Pi, Qi) is pairwise
a-Hausdorf! for each i.
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Proof. Suppose each (Xi' Pi, Qi) is pairwise a-Hausdorff. Let {Xi} and {Yi}
be two distinct point in Xi' Then there is k such that xi=l=Yi. Since (X",
Pi, Q,,) is pairwise a-Hausdorff, there is uEPi , vEQ" such that u(xi»a,
v(y,,»a and u!\v=O. Then p,,-l(U) ({Xi} »a, p,.-l(V) ({Yi} »a and
h-1(u) !\Pi-1(v) =0. Hence (If Xi' P, Q) is pairwise a-Hausdorff. Conversely,
suppose (11" Xi' P, Q) is pairwise a-Hausdorff. Let Xi, Yi E Xi such that Xi::f:
y" and let X=X"X{Xi: i::#:k}. Then X=XiX{Xi: i=l=k} =l=y;.x{Xi: i=l=k} =y.
Since a subspace of a pairwise a-Hausdorff fbs is again pairwise a-Hausdorff.
Now (X, P/X, Q/X) is pairwise a-Hausdorff implies that there is uEP/X,
vEQ/X such that u(x»a, v(y»a and u!\v=O. Note that U and v are
each of the form V/'1{[Prl-l(url)!\"'!\Prn-l(ur,,)] : UriEPri, rh 7'2, .••rnE /'1l
and V&?{[P,n-1 (Viil)!\ .•. I\Pom-1 (vom)] : VoiEQoi' Oh 02.•.0mE&?} and note if
any ri=l=k and oi=l=k, then Pri-1(uri)and PiJi-1 (Voi) are constant on X. thus
u?:'Pk-1 (u,,) I\kh v?:'Pk-1(Vk) !\k2. where u"EP", v"EQ", [Pk-1(u,,) I\k1] (x)
>a and [p,,-I(v,,) !\k2] (y»a. Since k1!\k2> 0, 0 = u!\v?:.Pk-1(u,,!\v,,)1\
(kI!\k2) implies p,,-l(Ukl\vk) = 0, so ukl\v,,= O. Also Pi-I (Uk) (x»a and
Pi-I (Vk) (y»a so U,,(xi»a and v,,(y,,»a. Hence (Xi, Pi, Qi) is pairwise
a-Hausdorff space.

5.4. THEOREM If (Xi' Pi' Qi) is a family of fuzzy bitoPOlogicaJ spaces such
that (IfXi' P, Q) is pairwise a-compact, then each (Xi' Pi' Qi) is pairwise a­
compact.

Proof. It is clear from theorem 2. 2.

The converse of the above theorem, namely that the product of any family
of pairwise a-compact fuzzy bitopological spaces, is again pairwise a-compact
would be a generalization of Tychonoff's product theorem. But this is not
the case as the following example shows.

EXAMPLE Let Xi U=l, 2) be a countable set: X i= {Xh x2' x3, ..•}. Let P
and Q be the discrete fuzzy space and indiscrete fuzzy space. Thenfbs (Xh

P, Q) and fbs (X2, Q, P) are pairwise a-compact since every pairwise a­
shading must contain the fuzzy set 1. Let ui, Vi E P be the fuzzy open sets
de:6.nedasfollows. Ui(xi»a, Ui(Xj) =0 i=l=i, Vi(xi»a, vi(xj)=Oi=l=j. Then
the pairwise a-shading {PI-I (UI) , PI-I (U2), "', P2-1 (VI) , P2-I (V2), •••} of
(XI XX2, pxQ, QXP) does not have a :finite a-subshading. Therefore
(X1XX2, pxQ, QXP) is not pairwise a-compact.

5. 5. THEOREM Let {Xi, Pi' Qi)} be any family of fuzzy bitopologica! spaces.
Then (IfXi' P, Q) is pairwise a-connected iff each (Xi, Pi' Qi) is pairwise a­
connected.
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Proof. Suppose (If Xi, P, Q) is pairwise a-connected. Then the projection
h : (IfXi, P, Q) ~ (Xk, Pk, Qk) is a pairwise F-continuous surjection. Thus
by theorem 4.3. (Xk, Pk, Qk) is pairwise a-connected for each k. Conversely,
if x= {Xk} and y= {Yk} differ by at most finitely many coordinates, then x
and Y lie in a pairwise a-connected fuzzy subspace of (If Xi, P, Q); this
follows by induction on theorem 4. 1. and the fact that fuzzy injections
preserve pairwise a-connectivity. Futhermore, given x= {Xk}, then P-Cla(D)
=lfXi=Q-ela(D) where D= {Y= {Yk}; x and Y differ by at most finitely
many coordinates}. To show this, let zE lf Xi and let uEP such that u(z)

n n

>a, then there are 7h "', 7n such that u:?: (\ Pri- 1 (Uri) and !\Pri- 1 (Uri) (z)
t=1 ;==1

>a where UriEPri for each i. Let y= {Yi} be chosen such that Y,.;=Z,.; for

each i and Yr=Xr otherwise. Then yED and u(y) :?:APri(Uri) (y) = AUri(Zri)
i=l i=1

= APri-
1 (Uri) (z»a:?:O, hence zEP-Cla(D) .

•=1

Similarily, we have zEQ-ela(D), therefore If Xi = P-Cla(D) nQ-ClaCD).
The theorem follows from theorem 4. 1.
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