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SOME GENERALIZATIONS OF
COMPACT CONVERGENCE SPACES
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§0. Introduction

In the study of topology, the concept of compactness is generalized in
many ways, namely the concept of real compactness or more generally that
of Z-compactness [5], that of minimal Hausdorff spaces, that of H-closed
spaces, and that of paracompact spaces among others Compact spaces are
convergence spaces are defined by the exactly same fact.

In this paper, we try to generalize the concept of compact convergence
spaces in the similar vein. We introduce the concept of ultza real compact
spaces by the fact that every ultraﬁlter with the countable intersection
property is convergent and then get some properties of those spaces. We
show that they are closed under thie formation of products and closed
subspaces. It is known [4] that every oompletely regular space has the real
compactification, and [8] that every Hausdorff convergence space has a
compactification. Using the same method, we show that every convergence
space has an ultra real compactification.

For the terminology of convergence space, we refer to [1], [3].

§1. Ultra real compact spaces

1.1 DEFINITION. Let % be an infinite cardinal. A family & of subsets of
X is said to have the E—intersection property if every subfamily of & whose
cardinal is less than % has the non-empty intersection.

We note that a family has the finite(resp. countable)intersection property
iff it has the $y—(¥N;—resp.) intersection property.

In the following, # will denote®aii infhite cardinal.

1.2 DEFINITION. A convergence space is said to be wltra k-compact if
every ultrafilter with the Z-intersection property is convergent.

1.3 REMARK. 1) A convergence space is compact iff it is ultra ¥;-compact.

2) If there is no measurable cardinal, then a dlscrete topological space
is ultra ¥N;—compact (see [4]).
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3) i % » are infinite cardinal with %2<#, then every ultra k-compact
convergence space is ultra n—compact. In particular, for any infinite cardinal
£, compact space is ultra Z-compact.

4) Since an ultrafilter with the countable intersection property has the k-
intersection property for any non-measurable cardinal %(see [4]), every
ultra—k—compact space is also ultra ¥;-compact.

Thus if there is no measurable cardinal, then one has only two classes of
ultra 2-compact spaces, namely the class of compact spaces and that of ultra
N;—-compact spaces.

1.4 DEFINITION. An ultra $;-compact convergence space will be called an
ultra realcompact space.

1.5 THEOREM. An arbitrary product of ulira realcompact space is ultra
realcompact.

Proof. Let X=T1 X, where each X; is ultra realcompact, and let Pr;:

iel il

X—X; be the i—th projection. Take any ultrafilter F on X with the countable
intersection property, then for each i€I, Pr;(J) is again an ultrafilter
base with the countable intersection property. Since X is ultra realcompact,
Pr;(F) 1is convergent, say to z;. Hence & converges to (z;) in X.

1.6 THEOREM. A closed subspace of an ultra realcompact space is again
ultra realcompact.

Proof. Let F be a closed subspace of an ultra realcompact space X and
F an ultrafilter on F with the countable intersection property. Since & is an
ultrafilter base on X with the countable intersection property, it is convergent
on X, say to z. Since zEF=F and F is a subspace of X, & also converges
to z on F.

1.7 DEFINITION Let f: X—Y be a continuous map between convergence
spaces X and Y. Then f is said to be perfect if for any ultrafilter 4 on X
such that £(%) converges to y on Y, there is zEX such that % converges
to = and f(z)=y.

1.8 THEOREM. If f: X—Y is a perfect map and Y is ultra realcompact,
then X is also ultra realcompact.

Proof: For any ultrafilter % on X with the countable intersection property,
f(@) is also an ultrafilier base with the countable intersection property.
Hence F(#) is convergent. Since f is perfect, % is also convergent. This
completes the proof.
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For any Hausdorff convergence X, let {F,| ¢ T} be the set of all ultrafilters
on X with the countable intersection property, where X< T and for z€ X,
Fo=7. . ‘ , o . .
Let T denote the strict extension of X associated with {F,|te T} (see

(7D).

1.9 THEOREM. The space T is Hausdorff ultra real compactification of X,
in other words, T is a Hausdorff extension of X which is ultra realcompact.

Proof. Since T is a Hausdorff extension of X ([7]), it remains to show
that T is ultra realcompact. Let ® be an ultrafilter with the countable
intersection property and let U= {FCX] Fc®}, while F= ic T| FEJ} (see
again [7] for the detail). Using Proposition 1.8 in [7], it is immediate
that % is an ultrafilter on X. Take any sequence {F,}..n in %. Since @ has
the countable intersection property, NF,%g, say t€NF, Since F has the
countable intersection property and F,€9, a&N), NF,x¢. Thus ¥ is an
ultrafiler on X with the countable intersection property and hence there is
some £ € T with %=5,. For any Fel=§,, Feo, ie., S“’,OQ@ so that
@ converges to #,. This completes the proof. ‘

1.10 NOTATION. The space T in Theorem 1.8 will be denoted by ¥, X.

1. 11 THEOREM. For any regular Hausdorffl ultra realcompact space K and
any continuous map f : X—K, there is a continuous map f:PB,X—K with
FIX=f.

Proof: For any t€®,X—X, f(F,) is an ultrafiter base on K with the
countable intersection property. Since K is Hausdorff ultra realcompact, f
(&,) has a unique limit, say y,, We define f: ¥.X—K by f(z)=Ff(2) (=
e€X) and f(&) =y, ¢(€¥ X—X). Obviously f|X=f and hence it remains
to show the continuity of 7. To do so, we observe that for any ACX, f
(A) is contained in f(A). Indeed, for z€ANX=A4, Ff@)=Ffx)efll)c
fA); for teA—X, AcY, and F(F,)—F() and hence F(¢) €f(4). Now
take any filter ® on ¥ X converging to . If X, then there is a filter @
on X converging to ¢ and @<®. Since f is continuous, f (@ —f(¢). Since
Y is regular, F@—f()=F() and @ ~F(@ SF@SF(®) by the above
observation. Thus 7(®) also converges to F@. If t€¥,X—X, then F,cO.
Since F(F)—F @) and F(F,)=F(F,) SF (&) S F (D), F(®) also converges to
F(@. This completes the proof.
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