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SOMEGENEKA:tlZATrONS OF
COMPACT CONVERGENCE SPACES
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§ O. Introduction

In the study of topology, the concept of compactness is generalized in
many ways, namely the concept of real compactness or more generally that
of k-compactness [5J, that of minimal Hausdorff spaces, that of H-closed
spaces, and that of paracompact spaces amoDg others. Com})act spaces are
charactedied by the fact lhal evei-yultrafilter is convergent. HenCe compact
convergence spaces are de;fined by the exactly same fact.

In this paper, we try to generalize the concept of compact convergence
spaces i.n the ;>imilar vein. We UtUQdu~ the C<;)nc~t of ultta real~t
spa~ by the fact that every ultra:6Iter with the countable intersection
property is convergent and then ~ some properties of thOse spaces. We
show that theY are closedUrider die" fc:mnation of "produCts 'ad'Closed
subspaces. It is known [4J that every completely regular space has the real
compactification, and [8J that every Hausdorff convergence/3Pace has a
compactification. Using the same method, we show that every convergence
space has an ultra real compacti:6.cation.

For the terminology of convergence space, we ref~r to [lJ, [3].

§ 1. Ultra real compact spaces

1.1 DEFINITION. Let k be an infinite cardinal. A family :J of subsets of
X is said to have the k-intersection property if every subfamily of [J whose
cardinal is less than k has the non-empty intersection.

We note that a family has the finite(resp. countable)intersection property
iff it has the No-(Ncresp.) intersection property.

In the following, k will denotellPail mrbute cardinal.

1.2 DEFINITION. A eonvergeneespace is said to be ttltt'll ''k-'-ci»npaet if
every ultrafilter with the k-intersectionproperty is QOnvergent.

1. 3 REMARK.. 1) A convergence space is compact iff it is ultra No-compact.
2) If there is no measurable cardinal, then a discrete topological space

is ultra Nl-compact (see [4J).
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3) If k, n are infinite cardinal with k~n, then every ultra k-compact
convergence space is ultra n-compact. In particular, for any infurite cardinal
k, compact space is ultra k-compact.

4) Since an ultraDlter with the countable intersection property has the k­
intersection property for any non-measurable cardinal k (see [4J), every
ultra-k-compact space is also ultra N1-compact.

Thus if there is no measurable cardinal, then one has only two classes of
ultra k-compact spaces, namely the class of compact spaces and that of ultra
Nl-compact spaces.

1.4 DEFINITION. An ultra Nl-compact convergence space will be called an
ultra realcompact space.

1. 5 THEOREM. An arbitrary product of ultra realcompact space is ultra
realcompact.

Proof. Let X= 1f Xi' where each Xi is ultra realcompact, and let Pri:
ieI ieI

X -+Xi be the i-th projection. Take any ultrafilter fJ on X with the countable
intersection property, then for each iEI, Pri (fJ) is again an ultrafilter
base with the countable interSection property. Since X is ultra rea1compact,
Pri (F) is convergent, say to Xi' Hence fJ converges to (Xi) in X.

1. 6 THEOREM. A closed subspace of an ultra realcompact space is again
ultra realcompact.

Proof. Let F be a closed subspace of an ultra rea1compact space X and
fJ an ultrafilter on F with the countable intersection property. Since fJ is an
ultrafilter base on X with the countable intersection property, it is convergent
on X, say to x. Since xEF=F and F is a subspace of X, fJ also converges
toxonF.

1. 7 DEFINITION Let f : X -+ Y be a continuous map between convergence
spaces X and Y. Then f is said to be perfect, if for any ultrafilter flt on X
such that f(flt) converges to y on Y, there is xEX such that flt converges
to X and f(x) =y.

1. 8 THEoREM. If f : X -+Y is a perfect map and Y is ultra realcompact,
then X is also ultra realcompact.

Proof: For any ultrrilter flt on X with the countable intersection property,
f(flt) is also an ultrafilter base with the countable intersection property.
Hence feU) is convergent. Since f is perfect, U is also convergent. This
completes the proof.
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For any Hausdorff convergence X, let {~tl tE T} be the set of all ultrafilters
on X with the countable intersection property, where X!;; T and for xE X,
Fg;=:::;,J;.

Let T denote the strict extension of X associated with {Ft I tE T} (see
[7J).

1.9 THEOREM. The space T is Hausdorff ultra real compactification of X,
in other words, T is a Hausdorff extension of X which is ultra realcompact.

Proof. Since T is a Hausdorff extension of X ([7J), it remains to show
that T is ultra realcompact. Let;P be an ultrafilter. with the countable
intersection property and let 'lJ= {F!;;Xj PE4)}, while P= {tE Tl FE~t} (see
again [7J for the detail). Using Proposition 1.8 in [7J, it is immediate
that fJj is an ultrafilter on X. Take any sequence {Fnl ..eN in fJj. Since Whas
the countable intersection property. nPn:!>;=ifJ. SlilY tE nPn. Sin~:Jt has the
countable intenrection property and FnE ~t (n EN), nFn:!>;= ifJ. Thus fJj is an
ultrali1er on X with the countable intersection property and hence there is
some toE T with ru,=~to. For any FEru,=;}to, FEW, i. e., ~to!;;W so that
4) converges to '0. This completes the proof.

1. 10 NOTATION. The space T in Theorem 1. 8 will be denoted by Cllc X.

1. 11 THEOREM. For any regular Hausdorff ultra reoJcomjlod space K and
any continuous map f: X-K, there is a continuous map J: CllcX--->-K with

JIX f·
Proof: For any tECllcX-X, f(;}t) is an ultrafilter base on K with the

countable intersection property. Since K is Hausdorff ultra reaIcompact, f
(;}t) has a unique limit, say Yt. We define I: CllcX-...K by lex) f(x) (x
EX) andJ(t)=Yt (tECWcX-X). Obviously J\X=f and hence it remains
to show the continuity of J. To do so, we observe that for any A !;;X, J
(A) iscontainedinf(A). Indeed, forxEAnX=A, J(x)-f(x)Ef(A)~

f(A); for tEA-X, AE~t and f(~t)--->-J(t) and hence J(t) Ef(A). Now
take any filter W on CWcX converging to t. If tEX, then there is a filter (J
on X converging to t and ~!;;4). Since f is continuous, f (fJ) --->-f(t) . Since
Y is regular, f(~)-f(t) J(t) and f(fJ) J(~) !;;J(fJ) cJ«(Jj) by the above
observation. Thus J(4» also converges to J(t). If tECWcX-X, then ~t!;;4).

Since f(fJt)--->-J(t) and f(;}t) J(;}t)r;;;](~t)(;;;]«(J), ]«(j» also converges to
J(t). This completes the proof.
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