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PROJECTIVE SPACE

By LEE, YONG-WAN AND SUH, YOUNG-]lN

§ O. Introduction

Recently mBfty authors have been sttidied some necessary and su$~ient

conditions 01' sufficient conditions'to be one of model hypersurface Mp, qQ (a, b)
in quaternionic projective space, Qpm and developed those methods into
generic submanifolds immersed in Qpm by using the theory of Riemannian
:lihre bundle (eE. K.oo [9]~Lawsott [9], Pak[5], Shibuya [1], yanoL9J).
In this point of view, present authors studied another sufficient conditions
which are derived from locally symmetry of :it-I (M) to determine certain
generic submanifolds, where :it is the submersioIl defined by tb;elwpf­
'fibtanon :S4m+S'--"QFm.

§ 1. Tke 4ruetareof a g~~rie Sllbmuifold of (Jp..

It is' well known that a quaternionic projective space Qpm admits quatem­
ionic Kaehlerian structure is a Kaehlerian manifold of constant Q-sectional
curvature 4. (See Ishihara DJ, [2J and Konish [2J).

Let Qp14 be covered by a system of coordinate neighborhoods {O, yhl (in
the sequel, the indices k. i,j run {I, 2, .••, 4m}) and Fjb, Gt and H/' the
components of cannonical local base {F, G, H} of 3-dimensional vector
bundle V and gii those metric tensor. And let's denote by K"jih components
of the curvature tensors of Qp14. Since the unit sphere 8 414+3 is a space of
constant curvature 1. If we use the equation of co-Gauss, we find

0.1) K"jih=o"kgji-O}g"i+F"hFji-F/,Fk;-2F'kjFih
+G"hGji-G}Gki-2GkjGih+H"kHji-H}H"i -2HkjHih.

A submanifold M of Qpm is called a generic submanifold, if the normal
space Np(M) of M at p is always mapped into timgent space Tp(M) at p
under the action of the cannamcal local base F, G and H.

We consider an n-d1menslonal generic submanifold M of QPm covered by
a system of coordinate neighborhoods {U: xa} and represented by yf'=yi
(xa). And we denote the vectors oaY' (oa=%xa) tangent to M by Bai and unit
normal vectors by Nzi (In the sequel, the indices x, y, :1:, ••• run {n+ 1, ...,
n+P} , p=4m-n). Hence, if we put in {U: xa}
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F"iBa"=tPabBbi+PazN:I/' F"iNz'l= -tPzaBai,
(1. 2) GI/Bah=cftiBbi+cftazNzi, G";N/l= _cjJzaBai,

H//Bah=OabBbi+OazNzi, H"iNzh= _OzaBai,
then we get following structure, so called framed i-three structure, by
applying F, G and H to 0, 2) and taking account of a quaternionic Kae­
Werian structure (cf. [5J, [6J)

if>cbif>ac= -oi+tPazif>/, if>i(hz=O
cftcbcjJ/= -oab+cftazcjJ/, cftabcftbz=O
O,lOf/= -oi+O'/{}J1Jb• (}~}(}bz--:-O

(1;3) f#lfJll=~fJ.l+fJ?~b-<>_.IJ-./!JA:-'?'fjlab+f/J~l:(}l

OcbrPac= -tPi+rPazOzb, tPcbcftac=Oi+rPaxtPzb

tP/'O/= -rPi+Oaxif>x", rP/Oac=if>l+OaxcjJl
tPacrPcz= -Oaz, tPacOcz=rPa:I:, rpacOcz= -tPax

cjJacif>cz= Oaz, OactPcz= -rPr:, OacrPcz=tPaz

tPzarPaY=O, cftzaOaY=O, OzarPaz=O
tPzapaY=O:?, rPzacftaY=o,/, OxaOaY=o:Il.

We denote Vb be the covariant derivativative with respect to the Riema­
nnian. metric gba induced ott M. Then equations of Gauss and Weingarten
are given by

(1.4) 17~(/=hlJazN:Ij, 17vN:./=-hbaxBai

respectively, 1tIJa:& being tbeeo-mponents of the second fundamental tensor
with respect to the unit normal vectors Ni, where

hb:I:a=gaehbeYgy:I:J (gba) = (gbJ-1 and gyz=g;iN/N:I:i.
Applying the operator 17c=BiY; to (1. 2) and taking account of quaternic

KaeWerian structure of Qpm and (1. 4), we easily find that
YcrPab=rtf/Ji -qeDi+hcb:J!Pa:I: -hca~rp:I:b

(1. 5) YcrPab= -rt!Pab+PeDab+hcbAJa:I:-kca:I:,p/)
YeDi=qetPab-Pccftab+hcbxOa:I:-hcazO:l,

where we have put Pc=PiBci, qc=qiB/, rc=riB/.
Taking account of (1. 4), we can see that the equations of Gauss, Codazzi

and Ricci are respectively given by
(1.6) Kdel/=Odag"b-ocagdb +rfttfif>cb -:t/Jcaif>dlJ - 2(!>detPl/+rPtfrPclJ -rPcacjJtlb

-2<jJdcc/Jba+()tf(}c"-(}ca(}d"-2J}dlJ,,~+htfJ,,cb:I:-hca)ld'/.
(1. 7) Yckbaz_P'bhc'/:=if>/cif>7Ja -if>b:J:rpca- 'uAoif>ax+epcxepba

- (/Jb:I:rPca- 2rPcbepaz+(}c:I:Dba-(}bZ(}ca- 20c,j}a:I:·
(1.8) Kcby:I:=rPczif>by-q,,,:J:pcy+cfj/VJby-lf;bzf/Jcy+fJc:t:(Jby

-D,,:I:Ocy+hca:I:hbay-h"aZhcay.
where Kdcba and KcbYz being components of the curvature tensors determined
by the induced metric gcb and gY:I: in M and in the normal bundle of M,
respectively.
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§ 2. Generic submanifolds of a quatemionic Kaehlerian manifold
with locally symmetric fibred Riemannian space

Covering 84m+3 (1) by a system of coordinate nelghborhoods {O:,r:} such
that i't(O) =0 are coordinate neighborhoods of Qpm with local coordinate
(yi), we can represetlt the projection i't : 84m+L~QP(m) by yi=yi(y) and
put E/=o"yi (0" = o!oy") with the rank of matrix (E/) being always 4m
(In the sequel, the indices K, fl., l) run {I, 2, .•., 4m+3} ).

Let's denote by~, i}I.: and Cl.: components of e, ij and eof the induced Sasa­
kian 3-structure {e. i}, el in 8 4m+3 respectively.

Nut we define Ef+j by (Ef+J, C.") = (E), C/) -I, then {E"j, C"s} is a local
frame in 0 and {El, Cl} the frame dual to {E&j, C"s}' where

{}s=alf++bsi}"+ci", asat+hpt+cset=/J/.
Now, we take coordinate neighborhoods {U: x"} of ft-I (M) such that

1CCU) = U are coordinate ~ig4borhoods of M with local coordinates (xa),
whe~e 1C is a compatible submersion with totally geodesic fibres.

Thus, if we let the isometric immersion i: ft-l(M)~84m+3 be locally
expressed by y"=yf+Cx"), then the commutativity ftol=i o1C implies that
{Ea4 , Cas} is a local coframe in it-1(M) corresponding to {E/, C&1 in S4m+3
and {Eaao cas} the coframe dual to {Eaa, Cas} (Where in the sequel, the indices
a, /3, r and a, b, c run over {I, ..., n+31 al;ld U••••, n} respectively). Sjnce
~a, 7]'" and C'" are vertical vectors and span the tangent space to the fibre g.
at each point of M=ft-1(M), we can put in 0'

(2.1) cas=a~a+bs7J"+csr;,a,

~~ ~+~+~=M
where the functions as> bs and Cs are the restrictions of as> hs and Cs appearing
in C~s.

Let's denote the metrics on ft-I (M) by gap=G),pB/·Bt/1. where G),p metrics
on 84m+3• Then van der Waerden-Bortolotti covariant derivative of Eaa,
Ea'" are given by (See Ishihara and Konish [2J)

i7.Eaa=hbas(E.bCas+C/Eab),
C2.3) i7"Eod=hbt/sE.bcos-h}sC/EObt

i7.cos= -hca,E.cEoa+Pc/E/COt,
V"Cl= -kcbsE/Ei-PetSE.cCl,

where hbas= - (anb4+blha+CJ)ba), ,poa, ifJo4 and 8ba are framed f-3-structure
tensors which are given in (1.3).

When ft-I (M) is locally symmetric space, if we apply Y. to Kdcl/=
KorlEodErP,.,Eaa and use (2.3), we get

i7.Kdcba=E.e(hetfKscba+he/Kdsoa+hebsKdcsa+heasKdcbs)

-C;(ht!sK..cba+h/sK.deba+h'/sKdcea-heasKdc'/).
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from which, transvecting atCet= t;., btC·t=r/ and tfC·t=C· respectively, we
:find

(2.4) fAlKecrl+t/J/Kdell+f!JbeK dce4_t/J/'Kdcbe=0
(2.5) (heK ecb4+r/J/Kde1,a+r/JbeK dc/ -r/J/Kdcbe=o
(2.6) OdeKecb4+0/Kdeb4+ObeKdce4-Oe4Kdcbe=0

with the helf of projectivity of
KH=KdcbaEd@Ec@Eb@Ea

and (2. 1), (2.2).
Thw; we have the following proposition;

PROPOSrtION 2.1 Let M '6e a"geTierit S1lbmanifold of Qpm tmd 1E : M-M
the submersion which is compatible with the Hopf-fibration it: S4m+3~Qpm,

then locally symmetric submanifold it-I (M) satisfies the following identities
I) g(K(if>X)L, YL)ZL, WL)+g(K(XL, (if>Y)LZL, WL)

+g(K(XL, yL)(if>Z)L, WL) +g(K(XL, YL)ZL, (if> W)L) =0
IT) i(K(r/JX)L, yL)ZL, WL) +g(K(XL, (</JY)LZL, WL)

+g(K(XL, yL) (</JZ)L, WL) +g(K(XL, yL)ZL, (cftW)L) =0
Ill) g(K«OX)L. YL)ZL. WL) +g(K(XL, «()Y)LZL, WL)

+g(K(XL, YL) «()Z)L, WL) +g(K(XL, yL)ZL, «()W)L) =0

for anyvec.ior fi~ld$ X, Y, Z, W and framed f-3-stmcture tensor {rP, ep, ()} on
M, where XL means korizcmiat lift of 'lJector field X tangent to M.

On the other hand, if we take covariant derivative Pe to Kdcbs=KoTt
EodETcEPbCas in locally symmetric submanifold it-I (M), we get by using

(2.3) jjeKdcbt=Ee" {hed'Kscbt+he/Kdsbt+hebsKdc/-heatKdcb4-Pe/Kdcbc}
-C/ {hdesKecbt+h!sKdell+hbe}Cdc/} ,

from which, transvecting Ce,,, we find
Ce,.PeKdcbt=hdeuKecbt+h/uKdebt+hbeuKdc/,

from which, transvecting ataU, btbU and et&" respectively, and using equation
of co-Codazzi, we get

(2.7) if>deP'bif>ce+if>/flbif>ed+if>//fleif>cd=O
(2.8) PdePbepce+ <PrlVuifJed+ if;bef1eepcd= 0
(2.9) 0defll)ce+()/Vb()ed+()i/f7/Jcd=0

respectively, "by virture of

(Jlt!'H)H=O, (./l1Jq,H)Hi= -2()H, (./It!fJH)H 2cjJH
(1ldJH) H= 2OH , (1l1J</JH) H= 0, (.f2d1!) H= - 2tfiH
(1lIJH) H= -2cf;H, (.f21J()H) H=2if>H, (1lIJH) H=0,

on fibre ~ of it-I CM) , (2. 1) and (2. 2) , where {t;, 7), t;l are triple killing
vectors.
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Now substituting (1. 5) into (2.7), (2.8) and (2. 9), and transvecting
,p/,p,}, ifJ/ifJ/J and O/Oll/' respectively, we get

(2.10) ,pJZAtdJH/'= (r/IP.l)q,tly- (q/IP/,)Od:!'
(2. 11) ifJJZAuy</J/'= - (r"ifJ:.") ,ptly+(PlIP,/,)°tly,
(2.12) OJZAulJl= (q"o:."),ptly- (p"o:.")ifJtly by virtue of (l.3).
From which, transvecting ifrtl to (2. 10) and using (1. 3), we have

{-4(2m-p) +2p} (qiIP/') -2(9caAbe.z,p/')O,/=0.
Hence we get 8(m-p)qllPz"=0, by taking account of (2.10). Similarly,
if we transvect Oed to (2.10) and also using (1.3), (2.10) itseif, we:find
8(m-P)r"t/J/'=O. Thus, applying above methods to (2.11), (2.12), respecti­
vely, we get

PROPOSITION 2.2. Under the same assumptions in Proposition 2.1. (m*p),
M satisfies;

IV) ,pAN,pM=O, c/JANrpM=O, fJANOM==0,
where AN and {,pM, r/JM, OM} are second fundamental tensors and structure vectors
with respect to normal -oectors NN (N, M=l, ...,p) respectively.

§ 3. Generic submanifolds of QPm satisfying certain eonditions

In previous sectioIl, we have introd~ced some properties of M d~rived

from locally symmetry of ;i-I (M). In this section, \\7e want to study
converse problem. Then the generic submanifold of Qpm satisfying certain
conditions will be determined.

Since M is a submanifold of S4m+3. if we use equation of co-Gauss and
(1. 6) to curvature tensor of M then Ktlcbe.= g (K (Eel, Ec)Eb, Ea) are given
as following form

(3. 1) Ktlc"a=OJZgcb-ocagtl"+A~:zAc"z-Aca:zAtl,,z.

Substituting (3. 1) into (I), (m and (In) imply following equations
(3. 2) (,paeAtlez+,p,rAaeJ AcbZ+ (,piAcez+,p/AebJ AtlaZ

- (,pbeAtlez+,ptleAebz) A.:,,a'- (,paeAcez+t/J/Aaez) Atl"z=O,
(3.3) (epaeAdez+epdeAaez) Acbz+ (r/JbeAcez+r/J/Ae"z) Adaz

- (ep"eAdez+ifJdeAe"z) Acaz- (ifJaeAcez)~1f=O,

(3.4) (OaeAdez+O,lAaez) Acbz+ (O"eAcez+OceAebz) Adaz
- (o"eAdez+OieAe"z) Acaz-,- (OaeAc~z+O/Aaez) Ad"z=O.

on the other side, .tranSvecti1;tg ,pl, fjJcrl ~d ()/ to (IV) respectiyely, we
have

(3.5) Adbz,p,,"= Py"z,p,?, Ad"zr/Ji= Qy:.zifJ,?, Ad"z(}:."= Ry:..f£O,?,
where we have put Pyzz=AbeZt/J",bt/J/, Qy:.z=Abezr/Jz"r/J/ and Ry"z=Abez()z"O/.

Transvecting ,p:.a to (3.2) and taking account of (IV) and (3.'5), we
easily find,
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Py"Zcf>rzY (Pb"Ac"z+cf>/Ae1Jz) - P,,,zcf>cY (Pb"Ad"z+cf>,l~"Z) =0.
From which, transvecting cf>11,c, we have by using (1.3) and (IV),

(3. 6) Pw"Z(cf>b"~"z+cf>d"Ab"z)=0.
Similarly, applying those methods to (3. 3) and (3.4), respectively, we

also find,
(3. 7) Qw"z(Pb"~"z+efVAbez)=0, Rw"z(Ob"Ad"z+()d"Ab"z) =0.
Now suppose the n-dimensional generic submanifold M of Qpn+pl4 has flat

normal connections, then we have by (1. 8)
Abeil:A,ly- Aae%'Ab"y +(h!Z'i/J~y -C!JeltfJby -cjJbzc/Jay-cjJalStft1Jy+fJ1JaTJay-8(i2:8",=0.

Hence, if -we·-fiiinsvecf"?i~ii(J~J;·-'i{i~0ifi01;;··-(f,.7ZfI;,"f.oabOve-equatiotr,· we-~ ..

p"/PlJvz-Pz,/Pv/+ovZgy,,-o,,Zgyv=O,
(3.8) Q"/QlJvz_Q,,..zQv/+ovZgy,,-ozZgyv=O,

R"/R...vz-R"..zRv/+ovZgy,,-O,,Zgyv=O.
Therefore we conclude that

(Pa"~ev+(fid"Aaev) gy" - (cf>a"~e"+(!>d"Aa,,,) gyv=O,
(3.9) (c/Ja"Adev+Pd"Aaev)gy,,- (Pae~"z+c/J,lAae,,)gyv=O,

«(}a"Adev+(}d"Aaer)gyz- «(}a"~",,+Od"Aaez)gyv=O
by virture of (3.6), (3.7) and (3.8), where gyv~gcbN/Nv'~ being the metric
tensor of the. normal bundle of A(.

Contracting equation of (3.9) with respect to y and z, we get
·'tp/1LI;:+~·(lA~zO, 'ep~e~ezfifj~rJt,;,;~o,

()a"~ez+()d"Aaez=O,
for P>l When P=l, one of present authors showed those implications in[8]
and determined M which has above corresponding conditions in a real
hypersurface of QPm was model space Mp. qQ (a, b) •

Thus we have

THEOREM 3.3. Let M be an n-dimensional generic submanifold of Qpn+PI4
with flat normal connection. (n-::f=3p). If M satisfies (3. 2), (3.3), (3.4) and
IV) , then framed f-three-structure tensors {cf>, efl, (}} of M ccnnmutes with its
2nd fundamental tensor on M.

From this fact and Theorems in [5], we have

THEOREM 3. 4. Let M be a complete, generic submanifold of dimension n in
quatenzic projective space QP,I+PI4 (n=l=3p) with flat normal connection. Suppose
M satisfy (9~ 2), (3.3), (3.4) and(lV),end has parallel.meatt C1D"Vature vector
in the normal bundle, then M is of the form

it (SPl (rI) X ••• X SPN(rN) ),
where PI' ···,PN;;;: 1, Pi =41i+3 Cl;; non-negative integer), I;iri=l, Ei pi=n+3.
N=P+l.
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