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A NOTE ON A GENERIC SUBMANHIFOLDS OF QUATERNIONIC
PROJECTIVE SPACE

By LEe, YONG-WAN AND SuH, YOUNG-JIN

80. Introduction

Recently many authors have been stidied some necessary and suiﬁcmnt
conditions or sufficient conditions to be one of model hypersurface M, P (a,b)
in quaternionic projective space , QP” and developed those methods into
generic submanifolds immersed in QP” by using the theory of Riemannian
fibre bundle (cf. Kon [9], Lawson {81, Pak[5], Shibuya [7], Yano[9]).
In this point of view, present authors studied another sufficient conditions
which are derived from locally symmetry of #1(M) to determine certain
generic submanifolds, where % is the submersion defined by the Hopi~
fibration: S —QP=, -

§1. The structure of a generic submanifold of QP

It is' well known that a quaternionic projective space QP™ admits quatern-
ionic Kaehlerian structure is a Kaehlerian manifold of constant Q-sectional
curvature 4. (See Ishihara [1], [2] and Konish [2]).

Let QP™ be covered by a system of coordinate neighborhoods {U, y% (in
the sequel, the indices &,i,j run {1, 2 ...,4m}) and FA G# and Hf the
componénts of cannonmical local base {F,G, H} of 3-dimensional vector
bundle V and gj; those metric tensor. And let’s denote by K;;;* components
of the curvature tensors of @P™. Since the unit sphere S%*%3 is a space of
constant curvature 1. If we use the equation of co-Gauss, we ﬁnd

a.n Kk.n =04 gaz—s'hgk;_l‘Flthn Fth,‘-szJ

+GPG; —G Gy —2G4,G b+ H Hys— HA Hy —2H Hb.

A submanifold M of QP™ is called a generic submanifold, if the normal
space N,(M) of M at p is always mapped into fangent space T,(M) at p
under the action of the cannonical local base F,G and H.

We consider an n—-dimensional generic submanifold M of QP™ covered by
a system of coordinate neighborhoods {U : z¢} and represented by y'=jy
(z#). And we denote the vectors 3,y (0,=0/0z%) tangent to M by B,’ and unit
normal vectors by N. (In the sequel, the indices =z,y,z,... run {241, ...,
n+p}, p=4m—n). Hence, if we put in {U : 2%
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thB h.._¢ bBb‘+¢azNz’ thN B IaBa"
(1.2) GiBl=¢ B+ N7, GiNP=—¢.2Bj,
HiB=0,2Bi+0,.2N,}, H;iN}t=—0,B},
then we get following structure, so called framed f-three structure, by
applying F, G and H to (1,2) and taking account of a quaternionic Kae-
hlerian structure (cf. [5], [61)
_5ab+¢az zb, ab f:O
¢cb¢a __5ab+¢az xba ¢ab¢b =0
0 baa == —5ab+0azambu aaéabz;
(1"3) ‘ §l)tb¢a "'_‘:"""aa'b"'l_“{ﬁax b—s ﬂté%‘i?sbaé*‘_qia?azb
0Cb¢a€= —'¢ab+¢'axazb7 ¢cb¢a =aab+¢¢z .Tb
¢c”6’ f= =406, $l0=PLb+07¢.°
= _"0ax9 aca F= ¢a s 0 F = "'¢a
ﬂljac =07, 0,59, =_¢a’ 0. = i
¢za¢ay=0’ Iagay_o /) a¢a:t—0
xaqsay:Bzy, zaﬂba =0,, 0,°07=30,.

We denote |7, be the covariant derivativative with respect to the Riema-
nnian metric g;, induced on M. Then equations of Gauss and Weingarten
are given by

(1. 4) VbBaz—hbu Nz s VbN = —h?
respectively, h;® being the components 0f the second fundamental tensor
with respect to the unit normal vectors N,, where

- by t=g* ehbeygw (gba )= (gba) 1 and gyz___gjiN yszi-

Applying the operator J.=B/JF; to (1.2) and taking account of quaternic
Kaehlerian structure of QP™ and (1.4), we easily find that

VbL=repb —qf a{’+hcbx¢qz*hta¢¢zb ‘

(1- 5) Vc¢a = ——r,qi b+Pcﬂab+ kcbzﬂbaz'"kcaxﬁbxb

Vb= QC¢4 —pcPd b+h bzaax*hcazazb,
where we have put p.=p;B/, q.=q;B;}, r.=r;B}.

Taking account of (1.4), we can see that the equations of Gauss, Codazzi
and Ricci are respectively given by

(1.6) Ki*=0s8s— 08 as+BsGeo— P bas—202c0s° + P bes — P ban

— 20 4:5°+0.0.5—0 26 15— 2602 05° +h i b o™ — B by
(1' 7) vV chbaz“'V bhcaxz‘ﬁcx(ﬁba"qsbz ca"2¢cb¢az+¢cz¢ba
‘ - ¢bz¢ca - zﬂbcbﬂbax + eczaba - 0b$0m - 20cbﬂ pa
(1- 8) K cbyz = ¢;z¢by - ¢b”‘]3cy + ¢cz¢by - Sbbxﬂbcy + 0;!:0 by
- 0bxocy + hcazhbay - kbazkcay-
where K ;% and K,;,* being components of the curvature tensors determined
by the induced metric g, and g,, in M and in the normal bundle of M,
respectively.
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§2. Generic submanifolds of a quaternionic Kaehlerian manifold
with locally symmetric fibred Riemannian space

Covering $4"*3(1) by a system of coordinate neighborhoods {0 : v} such
that #(0) =0 are coordinate neighborhoods of QP* with local coordinate
(¥/), we can represent the projection # : $**+3—»QP(m) by »=3/(y) and
put E =0,y (0,~0/0y*) with the rank of matrix (E./) being always 4m
(In the sequel, the indices &, #, v run {1, 2, ...,4m-+3}).

Let’s denote by &, 7 and {* components of &, # and £ of the induced Sasa-
kian 3-structure (£, 7,} in S4=*3 respectively.

Next we_define Er; by (B5, CH=(EACH, then{By;, C<} is a local
frame in U and {E,,J, 5} the frame dual to {E¢;, Cr}, where

Ce,=af* +bs77'+c,<:‘, asa‘+bsb‘+csc"—5‘

Now, we take coordinate neighborhoods {T : 22} of #1(M) such that
z(U)=U are coordinate neighborhoods of M with local coordinates (22),
where 7 is a compatible submersion with totally geodesic fibres.

Thus, if we let the isometric immersion 7 : # 1(M)—S%t3 be locally
expressed by y*=y*(2*), then the commutativity Zoi=iox implies that
{E.2 C.% is a local coframe in 7#-1(M) corresponding to {EJ, C} in S¥=+3
and {E%,, C*;} the coframe dual to {E,? C,®} (Where in the sequel, the indices
@, 8,7 and a,b,c run over {l,...,z+3} and {1,..,s} respectively). Smca
&%, 5= and {* are vertical vectors and span the tangent space to the fibre &
at each point of M=7%-1(M), we can put in U

(2 1) Cce —a§“+b,ﬂ“+c,§ »

2.2 aa b et =04,
where the functions a,, b, and ¢, are the restrictions of a,, b, and ¢, appearing
in Cs,.

Let’s denote the metrics on Z71(M) by g,;=G,,B.*Bs* where G, metrics
on 843 Then van der Waerden-Bortolotti covariant derivative of E,,
E,* are given by (See Ishibara and Konish [2])

4 eEaa = hbas (Eebcas +CeJEab) s
(2- 3) 7 EE& zhbf Esbcas_hdb :Ce:Eﬁb’
‘7 eC'ss: _'hcasEecEaa_l'P cstEscCat:
7 ecﬁ“: - cbsEecEﬁb""P ct‘Eeccata
where hy%=— (a,$p*+bs*+c05)s &% ¢y and ;% are framed f-3-structure
tensors which are given in (1. 3).

When #1(M) is locally symmetric space, if we apply 7. to Kjz*=

R;, "B E7 EAE 2 and use (2.3), we get
7 3 chba =E A (hed's Kscba + hnstsba + hebstcsa + heastcbs)
'—Ces (hde sKecba +hc¢steba + hbestcea - heastcbe) ’
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from which, transvecting a!Ce,=§&, bCt,=17¢ and ¢!Ce,=* respectively, we
find

(2-4) R+ Raa®+05°Rac — 6K =0

(2- 5) {bde ecba+¢ceKdeba+¢’bech¢a“Sbcakdcbezo

(2- 6) 0:{‘ch6“ +8 c‘Kdeba +0bech¢a —0 eakdcbez 0
with the helf of projectivity of

KE=K 1, F*QE‘QE'QE,

and (2.1), (2.2).

Thus we have the following proposition;

PROPOSITION 2.1 Let M be a geweric submanifold of QP® and % : M—M
the submersion which is compatible with the Hopf—fibration 7% : Simt3—Qpm,
then locally symmetric submanifold % (M) satisfies the following identities

D) g(R@X)%, YE)ZE, WL) +g(K(XE, (9Y)LZE, WE)
+g(K (X% YE) (pZ) %, WE) +g (K (XE, YLYZL, (¢ W) 1) =0
II) g(K(@X)E, YE)ZE, WE) +g(K(XE, (¢Y)2ZE, WE)
+g (K (XE, YT) ($Z)E, WE) +g (K (XE, YEYZE, ($W)E) =0
I g(K(@X)L, YE)ZE, WD) +g(K (X%, 0Y)*ZE, WE)
- +g(R(XE, YR (0Z) L, WE) +g(K(XE, YE)ZE, (W) E) =0
for any.j veqiar ﬁélds X,Y,Z, W and framed f-3-structure tensor i¢,, 6} on
M, where X~ means horizontal lift of vector field X tangent to M.

On the other hand, if we take covariant derivative 7. 20 Ky5'=K;,5"
B2 E7 EBC,s in locally symmetric submanifold #-1(M), we get by using
(2- 3) ‘7 decbt= se {heds Kscbt—{‘hecskdsbt+hebskdcit_'heatkdcba ‘Pe.ythcbc}

- Cas {hd esK et:bt + hc‘sK debt + hbe:K dcet} )
from which, transvecting C¢,, we find
CsuVstcbt == hdeuK ecbt + kceuK debt + hbeuK dce‘:
from which, transvecting a,a*, 55* and c,c* respectively, and using equation
of co-Codazzi, we get

(2- 7) ¢deVb¢ce+¢ceVb¢ed+ ¢beVe¢cd= 0
(2.8) DV oPeet PV 1P ea +Po°F opoea=0
(2- 9) 0,1'71,0“‘{‘ eceybeed + 0§eVe0cd= 0

respectively, . by virture of
(LPH=0, (LD H=—20H, (L4H)H=opH
(LpH)E=201, (L H)H=0, (LepH ) H= —2¢H
(LHE)H=—2¢H, (L,0H)H=20H, (LHH)H=0,
on fibre & of Z-1(M), (2.1) and (2.2), where {,7,£} are triple killing
vectors.
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Now substituting (1.5) into (2.7),(2.8) and (2.9), and transvecting
¥ @2, 0,5, and 0,0, respectively, we get
(2.10) G Anpypst= (rsp.?) Pay— (94:") Oty
(2.11) S Anyht=— (red) ay+ (£1:") Oy,
(2.12) 0daAabyaz =(Qbazb)¢dy" (?bazb)gbdy by virtue of (1.3).
From which, transvecting ¢*¢ to (2.10) and using (1.3), we have
{""4 (27” "'15) +2?} (q@zb) “2(¢04Abaz¢zb) 0zc=0-
Hence we get 8(m—p)g;9.*=0, by taking account of (2.10). Similarly,
if we transvect 8 to (2.10) and also using (i.3), (2.10) itself, we find
8(m~p) rpg,*=0. Thus, applying above methods to (2.11), (2.12), respecti-
vely, we get

PROPOSITION 2. 2. Under the same assumptions in Proposition 2. 1. (m+#p),
M satisfies;

IV) ¢AN¢M 20’ ¢AN¢M=0’ 0AN0M =09
where AN and {Qy, Pu, Oy} are second fundamental tensors and structure vectors
with respect to normal vectors NN (N, M=1, ..., p) respectively.

§3. Generic submanifolds of @P= satisfying eertain eonditions

In previous section, we have introduced some properties of M derived
from locally symmetry of %1 (M). In' this section, we want to study
converse problem. Then the generic submanifold of QP> satisfying certain
conditions will be determined.

Since M is a submanifold of $4*+3, if we use equation of co-Gauss and
(1.6) to curvature tensor of M then K;;,=2(K(E4E,)E;, E,) are given
as following form

(3~ 1) chbazada gcb—acagdb"l_AJa zAcbI"'AcazAdbz-

Substituting (3.1) into (I), (II) and (III) imply following equations

(3 2) (¢a Aa'ez+¢d‘ Aaa:)A e (¢b’Aux+¢c Aab.t) Ada

- (¢b¢Adex+¢d Acb.t) Aca - (¢a ccx+¢c aez) Adb$=0

(3- 3) (QbaeAdez"_ ¢deAuz) Acb$+ (SbbcAcez_"Sbc‘Aebz) Adaz

- (¢beAdez+¢d ebz)A - (gba‘Am) Adb ’—0
(3 4) (0 Adcz"_ad Aaez) Acb +(abeAcex+0 Aebz) Ada
- (0b Adez+0d eb:t) Acaz— (0 eA¢¢$+0 Aaex) Adb _0

On the other side, . transvecting P2 3¢c and 64 to (IV) respectively, we
have

(3 5) Adbz 2 b=p yzx¢dy » 11(15z zb=Qyz$¢dy s Adbzazb:Ryzxe s
where we have put P,*=A;%¢.%,", = Ap*Ptdy¢ and R, 7= A;70,%0,°.

‘Transvecting ¢, to (3.2) and takmg account of (IV) and (8. 5) we
easily find,
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P yzx¢dy (¢beAcez+¢ceAebz) —~P, jyzz 4 (¢beAdez+¢deA5¢z) =0.
From which, transvecting ¢,°, we have by using (1.3) and (IV),
(3 6) P, wz (¢beAdez+¢d Abez) ==(.
Similarly, applying those methods to (3.3) and (3.4), respectively, we
also find,
(8. 7) Qu:"(P8°AdeetPa°Aper) =0, Ry, (052 Agert04Ayez) =0.
Now suppose the n-dimensional generic submanifold M of QP*#/* has flat
normal connections, then we have by (1.8)
Abe AB‘.'I Ay Ay y+¢bﬂ oy~ P By~ Ps*Pay— " gbby*ﬁbz&ﬂy“a ﬂw——ﬂ.
Hence, if ‘we transvect @,%p,%, &, 50,5, 0,70, t6 above tquation; we- find -
sz Pyo® — Pyy® P'uy +3,° Eyz 0. gyv""o
3.8) szuqu.z_szvau_{_avxg 208 y-u:O’
RzyuRavz - Rzuvayu +0d,%g yz d.%g Yoo 0.
Therefore we conclude that
(¢aeAdew+ ¢deAﬂev) Eyz— (¢aeAdez + ¢d eAaez) Ey™ 0;
3.9 (¢a Ade'u+¢d Ar) g yz (Sba Age.HP4° Aaez) gyv'—o
(0 Adev+0d Am)gyz (a *Aget04° Aaez)gy-u
by virture of (3.6), (3.7) and (8.8), where g,,~g;N,°N,? being the metric
tensor of the normal bundle of M.
 Contracting equation of (3.9) with respect to y and % ‘we get
. ¢¢ Adex+§5d Aaez_“ ¢a Adcz+§b¢2 Aaez——o o
0 A-de.t+ 0d ae:c_o
for p>>1 When p=1, one of present authors showed those implications in[8]
and determined M which has above corresponding conditions in a real
hypersurface of QP™ was model space M, ,%(a, b).
Thus we have

THEOREM 3.3. Let M be an n—dimensional generic submanifold of QP"*#/4
with flat normal connection. (n#3p). If M satisfies (3.2), (3.3), (3.4) and
IV), then framed f-three—structure temsors ¢, P, 0} of M commutes with its
2nd fundamental tensor on M.

From t}ns fact and Theorems in [5], we have

THEOREM 3.4. Let M be a complete, genmeric submanifold of dimension n in
quaternic projective space QP**#'% (n+#3p) with flat normal connection. Suppose
M satisfy (3.2), (3.38), (3.4) and(IV), and has parallel mean curvature vector
in the normal bundle, then M is of the form

£(SP1(ry) X...XStu(ry)),
where D1y ooy PN 1, P,' =4l,+3 (l,'; non-—negative z'nteger), Z,ﬂ',‘Z:l, Z,’ pi=n+3,
N=p-+1.
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