A NOTE ON A GENERIC SUBMANIFOLDS OF QUATERNIONIC PROJECTIVE SPACE

BY LEE, YONG-WAN AND SUH, YOUNG-JIN

§ 0. Introduction

Recently many authors have been studied some necessary and sufficient conditions or sufficient conditions to be one of model hypersurface $M_{p,q}Q(a,b)$ in quaternionic projective space QP^m and developed those methods into generic submanifolds immersed in QP^m by using the theory of Riemannian fibre hundle (cf. Kon [9], Lawson [3], Pak[5], Shibuya [7], Yano[9]). In this point of view, present authors studied another sufficient conditions which are derived from locally symmetry of $\tilde{\pi}^{-1}(M)$ to determine certain generic submanifolds, where $\tilde{\pi}$ is the submersion defined by the Hopf-fibration: $S^{4m+3} \rightarrow QP^m$.

§ 1. The structure of a generic submanifold of QP^m

It is well known that a quaternionic projective space QP^m admits quaternionic Kaehlerian structure is a Kaehlerian manifold of constant Q-sectional curvature 4. (See Ishihara [1], [2] and Konish [2]).

Let QP^m be covered by a system of coordinate neighborhoods $\{\widetilde{U}, y^h\}$ (in the sequel, the indices h, i, j run $\{1, 2, ..., 4m\}$) and $F_i{}^h, G_i{}^h$ and $H_i{}^h$ the components of cannonical local base $\{F, G, H\}$ of 3-dimensional vector bundle V and g_{ji} those metric tensor. And let's denote by $K_{kji}{}^h$ components of the curvature tensors of QP^m . Since the unit sphere S^{4m+3} is a space of constant curvature 1. If we use the equation of co-Gauss, we find

$$(1.1) K_{kji}{}^{h} = \delta_{k}{}^{h}g_{ji} - \delta_{j}{}^{h}g_{ki} + F_{k}{}^{h}F_{ji} - F_{j}{}^{h}F_{ki} - 2F_{kj}F_{i}{}^{h} + G_{k}{}^{h}G_{ji} - G_{j}{}^{h}G_{ki} - 2G_{kj}G_{i}{}^{h} + H_{k}{}^{h}H_{ji} - H_{j}{}^{h}H_{ki} - 2H_{kj}H_{i}{}^{h}.$$

A submanifold M of QP^m is called a generic submanifold, if the normal space $N_p(M)$ of M at p is always mapped into tangent space $T_p(M)$ at p under the action of the cannonical local base F, G and H.

We consider an *n*-dimensional generic submanifold M of QP^m covered by a system of coordinate neighborhoods $\{U: x^a\}$ and represented by $y^i = y^i$ (x^a) . And we denote the vectors $\partial_a y^i (\partial_a = \partial/\partial x^a)$ tangent to M by B_a^i and unit normal vectors by N_x^i (In the sequel, the indices x, y, z, ... run $\{n+1, ..., n+p\}$, p=4m-n). Hence, if we put in $\{U: x^a\}$

(1.2)
$$F_{h}{}^{i}B_{a}{}^{h} = \phi_{a}{}^{b}B_{b}{}^{i} + \phi_{a}{}^{x}N_{x}{}^{i}, \quad F_{h}{}^{i}N_{x}{}^{h} = -\phi_{x}{}^{a}B_{a}{}^{i},$$

$$G_{h}{}^{i}B_{a}{}^{h} = \phi_{a}{}^{b}B_{b}{}^{i} + \phi_{a}{}^{x}N_{x}{}^{i}, \quad G_{h}{}^{i}N_{x}{}^{h} = -\phi_{x}{}^{a}B_{a}{}^{i},$$

$$H_{b}{}^{i}B_{a}{}^{h} = \theta_{a}{}^{b}B_{b}{}^{i} + \theta_{a}{}^{x}N_{x}{}^{i}, \quad H_{b}{}^{i}N_{x}{}^{h} = -\theta_{x}{}^{a}B_{a}{}^{i},$$

then we get following structure, so called framed f-three structure, by applying F, G and H to (1, 2) and taking account of a quaternionic Kaehlerian structure (cf. $\lceil 5 \rceil$, $\lceil 6 \rceil$)

$$\begin{aligned}
\phi_{c}{}^{b}\phi_{a}{}^{c} &= -\delta_{a}{}^{b} + \phi_{a}{}^{x}\phi_{x}{}^{b}, \quad \phi_{a}{}^{b}\phi_{b}{}^{x} &= 0 \\
\phi_{c}{}^{b}\phi_{a}{}^{c} &= -\delta_{a}{}^{b} + \phi_{a}{}^{x}\phi_{x}{}^{b}, \quad \phi_{a}{}^{b}\phi_{b}{}^{x} &= 0 \\
\theta_{c}{}^{b}\theta_{a}{}^{c} &= -\delta_{a}{}^{b} + \theta_{a}{}^{x}\theta_{x}{}^{b}, \quad \theta_{a}{}^{b}\theta_{b}{}^{x} &= 0
\end{aligned}$$

$$(1.3) \qquad \begin{aligned}
\phi_{c}{}^{b}\phi_{a}{}^{c} &= -\theta_{a}{}^{b} + \phi_{a}{}^{x}\phi_{x}{}^{b}, \quad \theta_{c}{}^{b}\phi_{a}{}^{c} &= \phi_{a}{}^{b} + \phi_{a}{}^{x}\theta_{x}{}^{b} \\
\theta_{c}{}^{b}\phi_{a}{}^{c} &= -\phi_{a}{}^{b} + \phi_{a}{}^{x}\theta_{x}{}^{b}, \quad \phi_{c}{}^{b}\phi_{a}{}^{c} &= \theta_{a}{}^{b} + \phi_{a}{}^{x}\phi_{x}{}^{b} \\
\phi_{c}{}^{b}\theta_{a}{}^{c} &= -\phi_{a}{}^{b} + \phi_{a}{}^{x}\phi_{x}{}^{b}, \quad \phi_{c}{}^{b}\theta_{a}{}^{c} &= \phi_{a}{}^{b} + \phi_{a}{}^{x}\phi_{x}{}^{b} \\
\phi_{c}{}^{b}\theta_{a}{}^{c} &= -\phi_{a}{}^{b} + \theta_{a}{}^{x}\phi_{x}{}^{b}, \quad \phi_{c}{}^{b}\theta_{a}{}^{c} &= \phi_{a}{}^{b} + \theta_{a}{}^{x}\phi_{x}{}^{b} \\
\phi_{c}{}^{b}\theta_{a}{}^{c} &= -\phi_{a}{}^{b} + \theta_{a}{}^{x}\phi_{x}{}^{b}, \quad \phi_{c}{}^{b}\theta_{a}{}^{c} &= \phi_{a}{}^{b} + \theta_{a}{}^{x}\phi_{x}{}^{b} \\
\phi_{c}{}^{c}\theta_{c}{}^{x} &= -\theta_{a}{}^{x}, \quad \phi_{a}{}^{c}\theta_{c}{}^{x} &= \phi_{a}{}^{x}, \quad \phi_{c}{}^{c}\theta_{c}{}^{x} &= -\phi_{a}{}^{x} \\
\phi_{a}{}^{c}\phi_{c}{}^{x} &= \theta_{a}{}^{x}, \quad \theta_{a}{}^{c}\phi_{c}{}^{x} &= -\phi_{a}{}^{x}, \quad \phi_{a}{}^{c}\phi_{c}{}^{x} &= -\phi_{a}{}^{x} \\
\phi_{a}{}^{c}\phi_{c}{}^{x} &= \theta_{a}{}^{x}, \quad \theta_{a}{}^{c}\phi_{c}{}^{x} &= -\phi_{a}{}^{x}, \quad \phi_{a}{}^{c}\phi_{c}{}^{x} &= \phi_{a}{}^{x} \\
\phi_{a}{}^{a}\phi_{a}{}^{y} &= 0, \quad \phi_{a}{}^{a}\phi_{a}{}^{y} &= 0, \quad \theta_{a}{}^{a}\phi_{a}{}^{x} &= 0 \\
\phi_{a}{}^{a}\phi_{a}{}^{y} &= \delta_{x}{}^{y}, \quad \phi_{a}{}^{a}\phi_{a}{}^{y} &= \delta_{x}{}^{y}, \quad \theta_{a}{}^{a}\theta_{a}{}^{y} &= \delta_{x}{}^{y}.
\end{aligned}$$

We denote ∇_b be the covariant derivative with respect to the Riemannian metric g_{ba} induced on M. Then equations of Gauss and Weingarten are given by

$$(1.4) \nabla_b B_a^i = h_{ba}^x N_x^i, \nabla_b N_x^i = -h_{ba}^x B_a^i$$

respectively, h_{ba}^{x} being the components of the second fundamental tensor with respect to the unit normal vectors N_{x}^{i} , where

$$h_{bx}^{a} = g^{ae}h_{be}^{y}g_{yx}, \quad (g^{ba}) = (g_{ba})^{-1} \quad \text{and} \quad g_{yx} = g_{ji}N_{y}^{j}N_{x}^{i}.$$

Applying the operator $\nabla_c = B_c^j \nabla_j$ to (1.2) and taking account of quaternic Kaehlerian structure of QP^m and (1.4), we easily find that

(1.5)
$$\begin{aligned}
\nabla_{c}\phi_{a}{}^{b} &= r_{c}\psi_{a}{}^{b} - q_{c}\theta_{a}{}^{b} + h_{c}{}^{b}{}_{x}\phi_{a}{}^{x} - h_{ca}{}^{x}\phi_{x}{}^{b} \\
\nabla_{c}\psi_{a}{}^{b} &= -r_{c}\phi_{a}{}^{b} + p_{c}\theta_{a}{}^{b} + h_{c}{}^{b}{}_{x}\phi_{a}{}^{x} - h_{ca}{}^{x}\phi_{x}{}^{b} \\
\nabla_{c}\theta_{a}{}^{b} &= q_{c}\phi_{a}{}^{b} - p_{c}\psi_{a}{}^{b} + h_{c}{}^{b}{}_{x}\theta_{a}{}^{x} - h_{ca}{}^{x}\theta_{x}{}^{b},
\end{aligned}$$

where we have put $p_c = p_i B_c^i$, $q_c = q_i B_c^i$, $r_c = r_i B_c^i$.

Taking account of (1.4), we can see that the equations of Gauss, Codazzi and Ricci are respectively given by

$$(1.6) \quad K_{dcb}{}^{a} = \delta_{d}{}^{a}g_{cb} - \delta_{c}{}^{a}g_{db} + \phi_{d}{}^{a}\phi_{cb} - \phi_{c}{}^{a}\phi_{db} - 2\phi_{dc}\phi_{b}{}^{a} + \psi_{d}{}^{a}\psi_{cb} - \psi_{c}{}^{a}\psi_{db} \\ - 2\psi_{dc}\phi_{b}{}^{a} + \theta_{d}{}^{a}\theta_{cb} - \theta_{c}{}^{a}\theta_{db} - 2\theta_{dc}\theta_{b}{}^{a} + h_{d}{}^{a}{}_{x}h_{cb}{}^{x} - h_{c}{}^{a}{}_{x}h_{db}{}^{x}.$$

$$(1.7) \quad V_{c}h_{ba}{}^{x} - V_{b}h_{ca}{}^{x} = \phi_{c}{}^{x}\phi_{ba} - \phi_{b}{}^{x}\phi_{ca} - 2\phi_{cb}\phi_{a}{}^{x} + \psi_{c}{}^{x}\phi_{ba} \\ - \psi_{b}{}^{x}\psi_{ca} - 2\psi_{cb}\psi_{a}{}^{x} + \theta_{c}{}^{x}\theta_{ba} - \theta_{b}{}^{x}\theta_{ca} - 2\theta_{cb}\theta_{a}{}^{x}.$$

$$(1.8) \quad K_{cby}{}^{x} = \phi_{c}{}^{x}\phi_{by} - \phi_{b}{}^{x}\phi_{cy} + \psi_{c}{}^{x}\psi_{by} - \psi_{b}{}^{x}\psi_{cy} + \theta_{c}{}^{x}\theta_{by} \\ - \theta_{b}{}^{x}\theta_{cy} + h_{ca}{}^{x}h_{b}{}^{a}{}_{y} - h_{ba}{}^{x}h_{c}{}^{a}{}_{y}.$$

where K_{dcb}^{a} and K_{cby}^{x} being components of the curvature tensors determined by the induced metric g_{cb} and g_{yx} in M and in the normal bundle of M, respectively.

§2. Generic submanifolds of a quaternionic Kaehlerian manifold with locally symmetric fibred Riemannian space

Covering $S^{4m+3}(1)$ by a system of coordinate neighborhoods $\{\hat{U}: y^{\epsilon}\}$ such that $\tilde{\pi}(\hat{U}) = \tilde{U}$ are coordinate neighborhoods of QP^m with local coordinate (y^j) , we can represent the projection $\tilde{\pi}: S^{4m+3} \rightarrow QP(m)$ by $y^j = y^j(y^{\epsilon})$ and put $E_{\kappa}{}^j = \partial_{\kappa} y^j \ (\partial_{\kappa} = \partial/\partial y^{\epsilon})$ with the rank of matrix $(E_{\kappa}{}^j)$ being always 4m (In the sequel, the indices κ, μ, ν run $\{1, 2, ..., 4m+3\}$).

Let's denote by ξ^s , $\tilde{\eta}^s$ and $\tilde{\zeta}^s$ components of $\tilde{\xi}$, $\tilde{\eta}$ and $\tilde{\xi}$ of the induced Sasakian 3-structure $\{\tilde{\xi}, \tilde{\eta}, \tilde{\zeta}\}$ in S^{4m+3} respectively.

Next we define E^{κ}_{j} by $(E^{\kappa}_{j}, \tilde{C}_{s}^{\kappa}) = (E_{\kappa}^{j}, \tilde{C}_{\kappa}^{s})^{-1}$, then $\{E^{\kappa}_{j}, \tilde{C}^{\kappa}_{s}\}$ is a local frame in \hat{U} and $\{E_{\kappa}^{j}, \tilde{C}_{s}^{\kappa}\}$ the frame dual to $\{E^{\kappa}_{j}, \tilde{C}_{s}^{\kappa}\}$, where

$$\tilde{C}^{\kappa}_{s} = a_{s}\tilde{\xi}^{\kappa} + b_{s}\tilde{\eta}^{\kappa} + c_{s}\tilde{\zeta}^{\kappa}, \quad a_{s}a^{t} + b_{s}b^{t} + c_{s}c^{t} = \delta_{s}^{t}.$$

Now, we take coordinate neighborhoods $\{\bar{U}: x^{\alpha}\}$ of $\tilde{\pi}^{-1}(M)$ such that $\pi(\bar{U}) = U$ are coordinate neighborhoods of M with local coordinates (x^{α}) , where π is a compatible submersion with totally geodesic fibres.

Thus, if we let the isometric immersion $\tilde{i}:\tilde{\pi}^{-1}(M)\to S^{4m+3}$ be locally expressed by $y^s=y^s(x^a)$, then the commutativity $\tilde{\pi}\circ\tilde{i}=i\circ\pi$ implies that $\{E_{\alpha}{}^a,C_{\alpha}{}^s\}$ is a local coframe in $\tilde{\pi}^{-1}(M)$ corresponding to $\{E_{\kappa}{}^j,\tilde{C}_{\kappa}{}^s\}$ in S^{4m+3} and $\{E^{\alpha}{}_a,C^{\alpha}{}_s\}$ the coframe dual to $\{E_{\alpha}{}^a,C_{\alpha}{}^s\}$ (Where in the sequel, the indices α,β,γ and α,b,c run over $\{1,...,n+3\}$ and $\{1,...,n\}$ respectively). Since $\xi^{\alpha},\eta^{\alpha}$ and ζ^{α} are vertical vectors and span the tangent space to the fibre \mathcal{F} at each point of $\overline{M}=\tilde{\pi}^{-1}(M)$, we can put in \overline{U}

$$(2.1) C^{\alpha}{}_{s}=a_{s}\xi^{\alpha}+b_{s}\eta^{\alpha}+c_{s}\zeta^{\alpha},$$

$$(2.2) a_s a^t + b_s b^t + c_s c^t = \delta_s^t,$$

where the functions a_s , b_s and c_s are the restrictions of a_s , b_s and c_s appearing in \tilde{C}^s .

Let's denote the metrics on $\tilde{\pi}^{-1}(M)$ by $g_{\alpha\beta} = G_{\lambda\mu}B_{\alpha}{}^{\lambda}B_{\beta}{}^{\mu}$ where $G_{\lambda\mu}$ metrics on S^{4m+3} . Then van der Waerden-Bortolotti covariant derivative of $E_{\alpha}{}^{a}$, $E_{\alpha}{}^{\alpha}$ are given by (See Ishihara and Konish [2])

(2.3)
$$\begin{split} \bar{\nabla}_{\varepsilon}E_{\alpha}{}^{a} &= h_{b}{}^{a}{}_{s}(E_{\varepsilon}{}^{b}C_{\alpha}{}^{s} + C_{\varepsilon}{}^{s}E_{\alpha}{}^{b}), \\ \bar{\nabla}_{\varepsilon}E^{\delta}{}_{d} &= h_{b}{}_{d}{}^{s}E_{\varepsilon}{}^{b}C^{\delta}{}_{s} - h_{d}{}^{b}{}_{s}C_{\varepsilon}{}^{s}E^{\delta}{}_{b}, \\ \bar{\nabla}_{\varepsilon}C^{\delta}{}_{s} &= -h_{c}{}^{a}{}_{s}E_{\varepsilon}{}^{c}E^{\delta}{}_{a} + P_{c}{}^{s}E_{\varepsilon}{}^{c}C^{\delta}{}_{t}, \\ \bar{\nabla}_{\varepsilon}C_{\delta}{}^{s} &= -h_{c}{}^{s}E_{\varepsilon}{}^{c}E_{\delta}{}^{b} - P_{c}{}^{s}E_{\varepsilon}{}^{c}C_{\delta}{}^{t}, \end{split}$$

where $h_b{}^a{}_s = -(a_s\phi_b{}^a + b_s\psi_b{}^a + c_s\theta_b{}^a)$, $\phi_b{}^a$, $\phi_b{}^a$ and $\theta_b{}^a$ are framed f-3-structure tensors which are given in (1.3).

When $\tilde{\pi}^{-1}(M)$ is locally symmetric space, if we apply \bar{V}_{ε} to $\tilde{K}_{dcb}{}^{a} = \tilde{K}_{\delta r\beta}{}^{a} E^{\delta}{}_{d} E^{r}{}_{c} E^{\beta}{}_{b} E_{\alpha}{}^{a}$ and use (2.3), we get

$$\vec{\nabla}_{\varepsilon} \tilde{K}_{dcb}{}^{a} = E_{\varepsilon}{}^{e} (h_{ed}{}^{s} \tilde{K}_{scb}{}^{a} + h_{ec}{}^{s} \tilde{K}_{dsb}{}^{a} + h_{eb}{}^{s} \tilde{K}_{dcs}{}^{a} + h_{e}{}^{a} \tilde{K}_{dcb}{}^{s}) \\
- C_{\varepsilon}{}^{s} (h_{d}{}^{e}, \tilde{K}_{scb}{}^{a} + h_{e}{}^{e}, \tilde{K}_{dcb}{}^{a} + h_{b}{}^{e}_{s} \tilde{K}_{dcs}{}^{a} - h_{e}{}^{a}, \tilde{K}_{dcb}{}^{e}),$$

from which, transvecting $a^tC^{\varepsilon}_t = \xi^{\varepsilon}$, $b^tC^{\varepsilon}_t = \eta^{\varepsilon}$ and $c^tC^{\varepsilon}_t = \zeta^{\varepsilon}$ respectively, we find

$$(2.4) \phi_d^e \tilde{K}_{ecb}^a + \phi_c^e \tilde{K}_{deb}^a + \phi_b^e \tilde{K}_{dce}^a - \phi_e^a \tilde{K}_{dcb}^e = 0$$

$$(2.5) \ \psi_d{}^e \tilde{K}_{ecb}{}^a + \psi_c{}^e \tilde{K}_{deb}{}^a + \psi_b{}^e \tilde{K}_{dce}{}^a - \psi_e{}^a \tilde{K}_{dcb}{}^e = 0$$

$$(2.6) \ \theta_d{}^e \tilde{K}_{ecb}{}^a + \theta_c{}^e \tilde{K}_{deb}{}^a + \theta_b{}^e \tilde{K}_{dce}{}^a - \theta_e{}^a \tilde{K}_{dcb}{}^e = 0$$

with the helf of projectivity of

$$K^{H} = K_{dcb}{}^{a}E^{d} \otimes E^{c} \otimes E^{b} \otimes E_{a}$$

and (2.1), (2.2).

Thus we have the following proposition;

PROPOSITION 2.1 Let M be a generic submanifold of QP^m and $\pi: \overline{M} \to M$ the submersion which is compatible with the Hopf-fibration $\tilde{\pi}: S^{4m+3} \to QP^m$, then locally symmetric submanifold $\tilde{\pi}^{-1}(M)$ satisfies the following identities

I)
$$g(K(\phi X)^{L}, Y^{L})Z^{L}, W^{L}) + g(K(X^{L}, (\phi Y)^{L}Z^{L}, W^{L}) + g(K(X^{L}, Y^{L})(\phi Z)^{L}, W^{L}) + g(K(X^{L}, Y^{L})Z^{L}, (\phi W)^{L}) = 0$$

II)
$$g(K(\phi X)^{L}, Y^{L})Z^{L}, W^{L}) + g(K(X^{L}, (\phi Y)^{L}Z^{L}, W^{L}) + g(K(X^{L}, Y^{L})(\phi Z)^{L}, W^{L}) + g(K(X^{L}, Y^{L})Z^{L}, (\phi W)^{L}) = 0$$

III)
$$g(K((\theta X)^{L}, Y^{L})Z^{L}, W^{L}) + g(K(X^{L}, (\theta Y)^{L}Z^{L}, W^{L}) + g(K(X^{L}, Y^{L})(\theta Z)^{L}, W^{L}) + g(K(X^{L}, Y^{L})Z^{L}, (\theta W)^{L}) = 0$$

for any vector fields X, Y, Z, W and framed f-3-structure tensor $\{\phi, \psi, \theta\}$ on M, where X^L means horizontal lift of vector field X tangent to M.

On the other hand, if we take covariant derivative $\bar{\mathcal{V}}_{\varepsilon}$ to $\tilde{K}_{dcb}{}^s = \tilde{K}_{\delta\tau\beta}{}^{\alpha}$ $E^{\delta}{}_{d}E^{\gamma}{}_{c}E^{\beta}{}_{b}C_{\alpha}{}^{s}$ in locally symmetric submanifold $\tilde{\pi}^{-1}(M)$, we get by using

$$(2.3) \qquad \bar{\nabla}_{e}\tilde{K}_{dcb}{}^{t} = E_{e}{}^{e} \{h_{ed}{}^{s}\tilde{K}_{scb}{}^{t} + h_{ec}{}^{s}\tilde{K}_{dsb}{}^{t} + h_{eb}{}^{s}\tilde{K}_{dcs}{}^{t} - h_{ed}{}^{t}\tilde{K}_{dcb}{}^{a} - p_{es}{}^{t}\tilde{K}_{dcb}{}^{c}\} \\ - C_{e}{}^{s} \{h_{d}{}^{e}{}_{s}\tilde{K}_{dcb}{}^{t} + h_{e}{}^{e}{}_{s}\tilde{K}_{dcb}{}^{t} + h_{b}{}^{e}{}_{s}\tilde{K}_{dcs}{}^{t}\}.$$

from which, transvecting C_{u}^{ε} , we find

$$C^{\varepsilon}_{u}\bar{\nabla}_{\varepsilon}\tilde{K}_{dcb}^{t} = h_{d}^{e}_{u}\tilde{K}_{ecb}^{t} + h_{c}^{e}_{u}\tilde{K}_{deb}^{t} + h_{b}^{e}_{u}\tilde{K}_{dce}^{t},$$

from which, transvecting $a_t a^u$, $b_t b^u$ and $c_t c^u$ respectively, and using equation of co-Codazzi, we get

$$(2.7) \phi_d^e \nabla_b \phi_{ce} + \phi_c^e \nabla_b \phi_{ed} + \phi_b^e \nabla_e \phi_{cd} = 0$$

$$(2.8) \qquad \psi_d^e \nabla_b \psi_{ce} + \psi_c^e \nabla_b \psi_{ed} + \psi_b^e \nabla_e \psi_{cd} = 0$$

$$(2.9) \theta_d^e \nabla_b \theta_{ce} + \theta_c^e \nabla_b \theta_{ed} + \theta_b^e \nabla_e \theta_{cd} = 0$$

respectively, by virture of

$$\begin{array}{lll} (\pounds_{\xi}\phi^H)^H \! = \! 0, & (\pounds_{\eta}\phi^H)^H \! = \! -2\theta^H, & (\pounds_{\xi}\phi^H)^H \! = \! 2\phi^H \\ (\pounds_{\xi}\phi^H)^H \! = \! 2\theta^H, & (\pounds_{\eta}\phi^H)^H \! = \! 0, & (\pounds_{\xi}\phi^H)^H \! = \! -2\phi^H \\ (\pounds_{\xi}\theta^H)^H \! = \! -2\phi^H, & (\pounds_{\eta}\theta^H)^H \! = \! 2\phi^H, & (\pounds_{\xi}\theta^H)^H \! = \! 0, \end{array}$$

on fibre \mathcal{F} of $\tilde{\pi}^{-1}(M)$, (2.1) and (2.2), where $\{\xi, \eta, \xi\}$ are triple killing vectors.

Now substituting (1.5) into (2.7), (2.8) and (2.9), and transvecting $\phi_y^c \phi_z^b$, $\psi_y^c \psi_z^b$ and $\theta_y^c \theta_z^b$ respectively, we get

- (2. 10) $\phi_d^a A_{abv} \phi_z^b = (r_b \phi_z^b) \phi_{dv} (q_b \phi_z^b) \theta_{dv}$
- $(2.11) \ \phi_d{}^a A_{ab} \phi_z{}^b = (r_b \phi_z{}^b) \phi_{dy} + (p_b \phi_z{}^b) \theta_{dy},$
- (2. 12) $\theta_d{}^a A_{aby} \theta_z{}^b = (q_b \theta_z{}^b) \phi_{dy} (p_b \theta_z{}^b) \phi_{dy}$ by virtue of (1. 3).

From which, transvecting ϕ^{cd} to (2.10) and using (1.3), we have $\{-4(2m-p)+2p\}$ $(q_b\phi_z^b)-2(\phi_c^aA_{ba}{}^x\phi_z^b)\theta_x^c=0$.

Hence we get $8(m-p)q_b\phi_z^b=0$, by taking account of (2.10). Similarly, if we transvect θ^{cd} to (2.10) and also using (1.3), (2.10) itself, we find $8(m-p)r_b\phi_z^b=0$. Thus, applying above methods to (2.11), (2.12), respectively, we get

PROPOSITION 2.2. Under the same assumptions in Proposition 2.1. $(m \neq p)$, M satisfies;

IV)
$$\phi A^N \phi_M = 0$$
, $\phi A^N \phi_M = 0$, $\theta A^N \theta_M = 0$,

where A^N and $\{\phi_M, \phi_M, \theta_M\}$ are second fundamental tensors and structure vectors with respect to normal vectors N^N (N, M=1, ..., p) respectively.

§ 3. Generic submanifolds of QP^m satisfying certain conditions

In previous section, we have introduced some properties of M derived from locally symmetry of $\tilde{\pi}^{-1}(M)$. In this section, we want to study converse problem. Then the generic submanifold of QP^m satisfying certain conditions will be determined.

Since \overline{M} is a submanifold of S^{4m+3} , if we use equation of co-Gauss and (1.6) to curvature tensor of \overline{M} then $\widetilde{K}_{dcba} = \widetilde{g}(K(E_d, E_c)E_b, E_a)$ are given as following form

- (3.1) $\tilde{K}_{dcb}{}^a = \delta_d{}^a g_{cb} \delta_c{}^a g_{db} + A_d{}^a{}_x A_{cb}{}^x A_c{}^a{}_x A_{db}{}^x.$
- Substituting (3.1) into (I), (II) and (III) imply following equations
- (3.2) $(\phi_a{}^e A_{dex} + \phi_d{}^e A_{aex}) A_{cb}{}^x + (\phi_b{}^e A_{cex} + \phi_c{}^e A_{ebx}) A_{da}{}^x (\phi_b{}^e A_{dex} + \phi_d{}^e A_{ebx}) A_{ca}{}^x (\phi_a{}^e A_{cex} + \phi_c{}^e A_{aex}) A_{db}{}^x = 0,$
- (3.3) $(\psi_a{}^e A_{dex} + \psi_d{}^e A_{aex}) A_{cb}{}^x + (\psi_b{}^e A_{cex} + \psi_c{}^e A_{ebx}) A_{da}{}^x (\psi_b{}^e A_{dex} + \psi_d{}^e A_{ebx}) A_{ca}{}^x (\psi_a{}^e A_{cex}) A_{db}{}^x = 0,$
- $(3.4) \quad (\theta_{a}{}^{e}A_{dex} + \theta_{d}{}^{e}A_{aex})A_{cb}{}^{x} + (\theta_{b}{}^{e}A_{cex} + \theta_{c}{}^{e}A_{ebx})A_{da}{}^{x} \\ (\theta_{b}{}^{e}A_{dex} + \theta_{d}{}^{e}A_{ebx})A_{ca}{}^{x} (\theta_{a}{}^{e}A_{cex} + \theta_{c}{}^{e}A_{aex})A_{db}{}^{x} = 0.$

On the other side, transvecting ϕ_c^d , ϕ_c^d and θ_c^d to (IV) respectively, we have

(3.5) $A_{db}{}^x\phi_z{}^b = P_{yz}{}^x\phi_d{}^y$, $A_{db}{}^x\phi_z{}^b = Q_{yz}{}^x\psi_d{}^y$, $A_{db}{}^x\theta_z{}^b = R_{yz}{}^x\theta_d{}^y$, where we have put $P_{yz}{}^x = A_{be}{}^x\phi_z{}^b\phi_y{}^e$, $Q_{yz}{}^x = A_{be}{}^x\psi_z{}^b\psi_y{}^e$ and $R_{yz}{}^x = A_{be}{}^x\theta_z{}^b\theta_y{}^e$.

Transvecting ϕ_z^a to (3.2) and taking account of (IV) and (3.5), we easily find,

 $P_{yz}{}^x\phi_d{}^y(\phi_b{}^eA_{cex}+\phi_c{}^eA_{ebx})-P_{yz}{}^x\phi_c{}^y(\phi_b{}^eA_{dex}+\phi_d{}^eA_{bex})=0.$ From which, transvecting $\phi_w{}^c$, we have by using (1.3) and (IV),

(3.6) $P_{wz}^{x}(\phi_{b}^{e}A_{dex}+\phi_{d}^{e}A_{bex})=0.$

Similarly, applying those methods to (3.3) and (3.4), respectively, we also find,

(3.7)
$$Q_{wz}^{x}(\phi_{b}^{e}A_{dex}+\phi_{d}^{e}A_{bex})=0$$
, $R_{wz}^{x}(\theta_{b}^{e}A_{dex}+\theta_{d}^{e}A_{bex})=0$.

Now suppose the *n*-dimensional generic submanifold M of $QP^{n+p/4}$ has flat normal connections, then we have by (1.8)

 $A_{ba}{}^{x}A_{a}{}^{e}{}_{y} - A_{aa}{}^{x}A_{b}{}^{e}{}_{y} + \phi_{b}{}^{x}\phi_{ay} - \phi_{a}{}^{x}\phi_{by} - \phi_{b}{}^{x}\phi_{ay} - \phi_{a}{}^{x}\phi_{by} + \theta_{b}{}^{x}\theta_{ay} - \theta_{a}{}^{x}\theta_{by} = 0.$ Hence, if we transvect $\phi_{z}{}^{a}\phi_{y}{}^{b}$, $\phi_{z}{}^{a}\phi_{y}{}^{b}$, $\phi_{z}{}^{a}\theta_{y}{}^{b}$ to above equation, we find

$$P_{zy}^{u}P_{uv}^{x} - P_{zu}^{x}P_{vy}^{u} + \delta_{v}^{x}g_{yz} - \delta_{z}^{x}g_{yv} = 0,$$

$$Q_{zy}^{u}Q_{uv}^{x} - Q_{zu}^{x}Q_{vy}^{u} + \delta_{v}^{x}g_{yz} - \delta_{z}^{x}g_{yv} = 0,$$

$$R_{zy}^{u}R_{uv}^{x} - R_{zu}^{x}R_{vy}^{u} + \delta_{v}^{x}g_{yz} - \delta_{z}^{x}g_{yv} = 0.$$

Therefore we conclude that

(3.9)
$$\begin{aligned} (\phi_{a}{}^{e}A_{dev} + \phi_{d}{}^{e}A_{aev})g_{yz} - (\phi_{a}{}^{e}A_{dez} + \phi_{d}{}^{e}A_{aez})g_{yv} &= 0, \\ (\psi_{a}{}^{e}A_{dev} + \phi_{d}{}^{e}A_{aev})g_{yz} - (\phi_{a}{}^{e}A_{dez} + \phi_{d}{}^{e}A_{aez})g_{yv} &= 0, \\ (\theta_{a}{}^{e}A_{dev} + \theta_{d}{}^{e}A_{aev})g_{yz} - (\theta_{a}{}^{e}A_{dez} + \theta_{d}{}^{e}A_{aez})g_{yv} &= 0 \end{aligned}$$

by virture of (3.6), (3.7) and (3.8), where $g_{yv} = g_{cb}N_y^cN_v^b$ being the metric tensor of the normal bundle of M.

Contracting equation of (3.9) with respect to y and z, we get

$$\phi_a^e A_{dex} + \phi_d^e A_{aex} = 0, \quad \phi_a^e A_{dex} + \phi_d^e A_{aex} = 0,$$

$$\theta_a^e A_{dex} + \theta_d^e A_{aex} = 0,$$

for p>1 When p=1, one of present authors showed those implications in [8] and determined M which has above corresponding conditions in a real hypersurface of QP^m was model space $M_{p,q}Q(a,b)$.

Thus we have

THEOREM 3.3. Let M be an n-dimensional generic submanifold of $QP^{n+p/4}$ with flat normal connection. $(n \neq 3p)$. If M satisfies (3.2), (3.3), (3.4) and IV), then framed f-three-structure tensors $\{\phi, \psi, \theta\}$ of M commutes with its 2nd fundamental tensor on M.

From this fact and Theorems in [5], we have

THEOREM 3. 4. Let M be a complete, generic submanifold of dimension n in quaternic projective space $QP^{n+p/4}$ $(n \neq 3p)$ with flat normal connection. Suppose M satisfy (3.2), (3.3), (3.4) and (IV), and has parallel mean curvature vector in the normal bundle, then M is of the form

$$\tilde{\pi}(S^{p_1}(r_1)\times...\times S^{p_N}(r_N)),$$

where $p_1, ..., p_N \ge 1$, $P_i = 4l_i + 3$ (l_i ; non-negative integer), $\sum_i r_i^2 = 1$, $\sum_i p_i = n + 3$, N = p + 1.

References

- 1. Ishihara, S., Quaternionic Kaehlerian manifold, J. Differention Geometry. 9(1974), 488-500.
- 2. Ishihara, S. and M. Konish, Differential geometry of fibred spaces, Publication of the study group of geometry 8, Tokyo, 1973.
- 3. Lawson, H.B., Jr., Rigidity theorems in rank 1 symmetric spaces, J. of Diff. Geo. 4 (1970), 349-359.
- Maeda, Y., Onreal hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540.
- 5. Pak, J.S., On normality of framed f-three structure, to appear.
- 6. Pak, J.S. and T.H. Kang, Generic submanifolds of a quaternionic projective space with parallel mean curvature vector, J. Korean Math. Soc. 17 (1981), 29-46.
- Shibuya, Y., Real submanifolds in a quaternionic projective space, Kodai Math. J. 1 (1978), 421-439.
- 8. Suh, Y. J., Real hypersurface of a quaternionic projective space, to appear.
- 9. Yano, K. and M. Kon, Generic submanifolds, Annali di Math. 123 (1980), 59-92.

An Dong College