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BOL LOOPS FROM GROUP EXTENSIONS, a further note

By K. W. ]OHNSON AND B. L. SHARMA

O. Introduction

In [3J Bol loops are constructed from split extensions of groups. In this
note it is investigated whether non split extensions of groups can give rise
in a similar manner to Bol loops. It is shown that a generalisation of the
construction given in [3J gives rise to power associative loops which are
not in general Bol loops. The condition obtained for the corresponding loop
to be Bol is almost identical to that which is necessary and sufficient for
the loop constructed to be embedded in the Bol wreath product mentioned in
[3]. This generalised construction gives hopes for the construction of new
Bol loops of small orders and BoI loops without Sylow subloops. The cons­
truction of Bol split extensions in this note differs slightly from that in [3J
but it is obviously equivalent and ties in more closely with the ideas given
in [2]. The construction given here is limited to the case where the kernel
of the extension is abelian.

1. Left Bol extensions constructed from non-split group extensions

An arbitrary group extension El of a group G by a G-module A may be
represented by the following multiplication on the set GXA; let x, yEG, a,
bEA. Then

(x, a) (y, b) = (xy,f(x, y) +af3(y) +b) (1)

Here f : GXG--.>A is a cocycle and f3 is a homomorphism from G to Aut (A).
We consider the extension Ez defined by

(x, a) (y, b) = (xy,f(y, x) +a+bf3(x)) (2)

The process of deriving Ez from El may be regarded as a "reflection" as
follows. In [2J an arbitrary loop extension of a loop Q by a "loop module"
A is described using the multiplication on QXA as follows; let x, yEQ, a,
bEA. Then

(x, a) (y, b) = (xy, f(x, y) +aL(x, y) +bR(x, y)) (3)

where Land R are maps from QXQ to Aut(A) which satisfy the normali-
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sation conditions L(x, e) =R(x, e) =R(e, x) =id. for all xEQ, and I is a
map from QX Q to A. Thus the extension E 2 is obtained from the maps
11> L1> RI which define El by forming the maps 12' ~,R2 defined by

12(x, y) 11 (Y, x), L2 (x, y) =RI (y, x), R2 (x, y) =Ll (y, x),

for all x, y in G. Note that E2 is not strictly a loop extension as defined in
[2J since the normalisation conditions need not hold.

It is straightforward to verify that E2 is associative if for all x, y, z in G
fi(xy) =fi(yx) and

I(yz, x) +/(z, y)fi(x) I(z, xy) +I(Y, x) (4)

This may be compared with the usual cocycle identity for I

I(x, y)fi(z) +/(xy, z) I(x, yz) +/(/, z) (5)

In partiular if G is abelian then E2 is associative. If however G is nona­
belian (4) need not be satisfied. In fact even if I is a coboundary, i. e. El
is a split extension (4) need not be satisfied. For let l(x,y)=c(x)f3(y) +
c(y) -c(xy) , where c is an arbitrary map from G to A. Then (4) is equiva­
lent to

(c(yz) -c(zy) )13 (x) -c(yzx) +c(z) f3(y) fi(x)

=c(z)f3«xy) +c(xy) -c(yx) -c(zxy) (6)

In particular if x lies in the centre of G then (6) reduces to

(c(yz) -c(zy) )13 (x) +c(yzx) -c(zyx) =0 (7)

Thus if c is chosen so that c(yz) =c(zy) but c(yzx) =Fe (zyx) then (4) is not
satisfied. Thus cohomologous factor sets of El can give rise to inequivalent
extensions via the reflection process.

If El arises as the pullback of an extension H of G j G' by A, i. e. if
there is a commutative diagram

O-A-EI - G --e

11 1 1ifJ
O-A-H-GjG'-e

where the rows are exact and ifJ is the natural surjection then there will be
a factor set 1 of El which satisfies I(xkh yk2) I(x, y) for all x, y in G, kh

k2 in G'. In this case (4) is automatically satisfied.
The left Eol identity x(y·xz) = (x'yx)z is satisfied by E 2 if and only if

l(Yxz, x) [/(xz, y) +b+[/(z, x) +z+cf3(x)Jf3(y)Jf3(x)

I(x, xyx) +/(yx, x) +a+[/(x, y) +b+af3(y)Jf3(x) (8)



Bol loops from group extensions, a further note 67

Since El satisfies the right Bol identity we have

fez, xyx) +c/3(xyx) +f(xy, x) +[f(x, y) +a/3 (y) +b]/3(x) +a

-f(zxy, x) +[f(zx, y) +[f(z, x) +c/3(x) +a]/3(y) +b]/3(x) +a (9)

Thus if f(xk, y) f(x, y) for all x, y in G, k in G' then (8) and (9) are
equivalent, i. e., E 2 is left Bo!. We summarise:

THEOREM 1. Given a factor set f of a group extension El of a group G by
a group module A a loop extension E2 may be produced by the operation defined
in (2). In general E2 is non-associative.

If f satisfies f(xk, y) f(x, y) for all x, y in G, k in G' then E2 is left Bol.
In particular such left Bol extensions may be constructed from extensions El
which are pullbacks of extensions of GIG' by A.

We note that it is easy to ens.ure that extensions E 2 are non associative
(and non-Moufang) by taking extensions El such that /3(xy) =/=/3 (yx). Multi­
plication in E 2 is power associative and it is straightforward to verify that
the order of the element (x, a) is the same under the operations defined by
(1) and (2). It is not obvious that Sylow subloops exist exist except in the
case where f is trivial (see [3J). No explicit example is known of a fac­
tor set which satisfiesf(xk,y) f(x,y) for all x,y in G,kEG' and which
fails to satisfy f(x,yk) f(x,y) for some x,y in G,kEG'. However there
is strong circumstantial evidence of the existence of such factor sets in that
they occur in the filtration given on p. 119 of [1].

2. Embedding in the wreath product

Since the wreath product of a group G by a group H is a split extension,
the construction in [3J gives rise to a "Bol wreath product". More speci­
fically the Bol wreath product of G by H, G"-'BH is the set {(g,~)} where
~ : G-H is an arbitrary function and gEG, with the following multiplica­
tion;

(gl' ~l) (g2' ~2) = (gl' gz, F),

where F(x) =~I(X)(Pz(gIX) for x,ghg2 in G.

Now let H be a G-module A and let E z be defined by (2). We consider
the embedding r : E2-G"-'BA defined by r(g, a) = (g,~) where ~(x) =a/3(x)
+f(g, x), for xEG.

THEOREM 2. The embedding 1: is a homomorphism if and only if f satisfies
the identity f(hg, x) ~f(gh, x) for all h, g, x in G.

Proof. The proof is by direct verification. Let Y = (g, a), Z = (h, b). Then
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'r(Y) = (g,~) and r(Z) = (h, 1;) where ~(x) =aj3(x) +f(g, x) and 1; (x) =
bj3(x)+f(h,x) where x,g,hEG. Thus'r(Y)''r(z)=(gh,F1) where

F1 (x) =~(x)1;(gx)=aj3(x) +f(g, x) +bj3(x) +f(h, gx).
Now YZ=(gh,j(h,gx)+bj3(g», and then

'r(YZ) = (gh, (f(h, g) +a+bj3(g» f3(x) +f(gh, x».
Thus 'r is a homomorphism iff

f(h, g)j3(x) +f(gh, x) f(g, x) +f(h, gx) (10)

The conclusion of the theorem follows since 'r is a homomorphism iff (5)
and (10) are simultaneously satisfied.

CoROLLARY. If f(xk,y)=f(x,y) for all kEG', x,y in G then E 2 may be
embedded in G'"'vBA.

3. Remarks

1. This extension of the construction given in [3J illustrates the close tie
-up between group extensions which give rise to groups and those which
give rise to Eol loops. Non-associative Moufang loops do not arise from
this construction.

2. The reflection process as described in § 1 suggests the following ques­
tion: which varieties of loops are closed under this process? In other words,
which varieties Cj) oi loops are such that whenever an extension of a loop
Q by a loop module A lies in Cj) then the reflected extension (with respect
to any cocycle) lies in C)9? The only obvious examples are the variety of all
loops and the variety of commutative loops.
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