THE UNIT GROUP OF THE INTEGRAL GROUP RING ZD:

BY JOONG SANG SHIN

1. Introduction

The purpose of this papers is to determine the unit group $U(\mathbf{Z}D_8)$, where D_8 is the dihedral group of order 8. In fact, the unit group $U(\mathbf{Z}D_8)$ has been studied in [1] and [5]. We will determine $U(\mathbf{Z}D_8)$ by the different method. The following is the main theorem in this paper.

THEOREM Let

$$D_8 = \langle x, y : x^4 = 1, y^2 = 1, y^{-1}xy = x^{-1} \rangle$$

be the dihedral group of order 8. Then U(ZD₈) is isomorphic to

$$\left\{ (e, \begin{bmatrix} a & b \\ c & d \end{bmatrix}) \in \mathbf{Z} \oplus M_2(\mathbf{Z}) : \substack{e = \pm 1, \\ b \equiv c \equiv 0} \text{ or } 2 \pmod{4} \right\} \\
\cup \left\{ (e, \begin{bmatrix} a & b \\ c & d \end{bmatrix}) \in \mathbf{Z} \oplus M_2(\mathbf{Z}) : \substack{e = \pm 1, \\ a \equiv d \equiv 0} \text{ or } 2 \pmod{4} \right\} \\
\cup \left\{ (e, \begin{bmatrix} a & b \\ c & d \end{bmatrix}) \in \mathbf{Z} \oplus M_2(\mathbf{Z}) : \substack{e = \pm 1, \\ b \equiv c \equiv 0} \text{ or } 2 \pmod{4} \right\} \\
\cup \left\{ (e, \begin{bmatrix} a & b \\ c & d \end{bmatrix}) \in \mathbf{Z} \oplus M_2(\mathbf{Z}) : \substack{e = \pm 1, \\ b \equiv c \equiv 0} \text{ or } 2 \pmod{4} \right\} \\
\cup \left\{ (e, \begin{bmatrix} a & b \\ c & d \end{bmatrix}) \in \mathbf{Z} \oplus M_2(\mathbf{Z}) : \substack{e = \pm 1, \\ a \equiv d \equiv 0} \text{ or } 2 \pmod{4} \right\},$$

where $\delta = ad - bc$.

The notations in this paper are standard. In particular, we will denote by $M_n(R)$ the full matrix ring of degree n over a commutative ring R with 1. Thus

$$U(M_n(R)) = \{A \in M_n(R) : \det A \in U(R)\}.$$

Since $U(\mathbf{Z}) = \{1, -1\}$, it follows that

$$U(M_n(\mathbf{Z})) = \{A \in M_n(\mathbf{Z}) : \det A = \pm 1\}.$$

2. The proof of Theorem

In this section we will prove our main theorem.

First of all, we will show that the group algebra $\mathbf{Q}D_8$ over the rational field \mathbf{Q} is isomorphic to $\mathbf{Q} \oplus \mathbf{Q} \oplus \mathbf{Q} \oplus \mathbf{Q} \oplus \mathbf{M}_2(\mathbf{Q})$.

Consider the map

$$\theta: \mathbf{Q}D_8 \rightarrow \mathbf{Q} \oplus \mathbf{Q} \oplus \mathbf{Q} \oplus \mathbf{Q} \oplus M_2(\mathbf{Q})$$

given by

$$\theta(x) = (1, -1, 1, -1, X), \ \theta(y) = (1, 1, -1, -1, Y)$$

where

$$X = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Since $X^4=1$, $Y^2=1$ and $Y^{-1}XY=X^{-1}$, we have a well defined homomorphism by linear extension. In fact, if $(a_1, ..., a_8)$ denotes the element

$$a_1 + a_2x + a_3x^2 + a_4x^3 + a_5y + a_6xy + a_7x^2y + a_8x^3y$$

of QD_8 and if $(x_1, ..., x_8)$ denotes the element

$$(x_1, x_2, x_3, x_4, \begin{bmatrix} x_5 & x_6 \\ x_7 & x_8 \end{bmatrix})$$

of $\mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q} \oplus M_2(\mathbb{Q})$, and we think of $(a_1, ..., a_8)$ and $(x_1, ..., x_8)$ as row vectors, then we have

$$(x_1, ..., x_8) = \theta(a_1, ..., a_8) = (a_1, ..., a_8)A,$$

where

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 - 1 & 1 - 1 & 0 & 1 - 1 & 0 \\ 1 & 1 & 1 & 1 - 1 & 0 & 0 - 1 \\ 1 - 1 & 1 - 1 & 0 & 0 - 1 & 1 & 0 \\ 1 & 1 - 1 - 1 & 1 & 0 & 0 - 1 & 1 \\ 1 - 1 - 1 & 1 & 0 - 1 - 1 & 0 & 0 \\ 1 & 1 - 1 - 1 & 1 & 0 & 0 & 1 \\ 1 - 1 - 1 & 1 & 0 & 1 & 1 & 0 \end{pmatrix}, \quad A^{-1} = \frac{1}{8} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 - 1 & 1 - 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 - 1 - 1 - 1 & 1 & 1 \\ 1 & 1 & 1 - 1 - 1 - 1 & 1 & 1 \\ 2 & 0 - 2 & 0 & 2 & 0 - 2 & 0 \\ 0 & 2 & 0 - 2 & 0 - 2 & 0 & 2 \\ 0 - 2 & 0 & 2 & 0 - 2 & 0 & 2 \\ 2 & 0 - 2 & 0 - 2 & 0 & 2 & 0 \end{pmatrix}$$

Since A^{-1} is an element in $M_8(\mathbf{Q})$, it follows that θ is an isomorphism of $\mathbf{Q}D_8$ onto $\mathbf{Q}\oplus\mathbf{Q}\oplus\mathbf{Q}\oplus\mathbf{Q}\oplus\mathbf{Q}\oplus\mathbf{M}_2(\mathbf{Q})$.

Now it is clear that

$$\mathbf{Z}D_8 \cong \theta(\mathbf{Z}D_8) \subseteq \mathbf{Z} \oplus \mathbf{Z} \oplus \mathbf{Z} \oplus \mathbf{Z} \oplus \mathbf{M}_2(\mathbf{Z}).$$

An element $(x_1, ..., x_8)$ of $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ is in $\theta(\mathbb{Z}D_8)$ if and only if $(a_1, ..., a_8) = (x_1, ..., x_8) A^{-1} \in \mathbb{Z}D_8$. Thus $(x_1, ..., x_8) \in \theta(\mathbb{Z}D_8)$ if and only if $a_1, ..., a_8 \in \mathbb{Z}$, where

$$a_{1} = \frac{1}{8}(x_{1} + x_{2} + x_{3} + x_{4} + 2x_{5} + 2x_{8})$$

$$a_{2} = \frac{1}{8}(x_{1} - x_{2} + x_{3} - x_{4} + 2x_{5} - 2x_{7})$$

$$a_{3} = \frac{1}{8}(x_{1} + x_{2} + x_{3} + x_{4} - 2x_{5} - 2x_{8})$$

$$a_{4} = \frac{1}{8}(x_{1} - x_{2} + x_{3} - x_{4} - 2x_{5} - 2x_{6} + 2x_{7})$$

$$a_{5} = \frac{1}{8}(x_{1} + x_{2} - x_{3} - x_{4} + 2x_{5} - 2x_{8})$$

$$a_{6} = \frac{1}{8}(x_{1} - x_{2} - x_{3} + x_{4} - 2x_{5} - 2x_{6} - 2x_{7})$$

$$a_{7} = \frac{1}{8}(x_{1} + x_{2} - x_{3} - x_{4} - 2x_{5} + 2x_{8})$$

$$a_{8} = \frac{1}{8}(x_{1} - x_{2} - x_{3} + x_{4} + 2x_{6} + 2x_{7})$$

Therefore, $(x_1, ..., x_8) \in \theta(\mathbf{Z}D_8)$ if and only if $(x_1, ..., x_8)$ satisfies the following system of congruences:

$$x_1+x_2+x_3+x_4+2x_5$$
 $+2x_8\equiv 0\pmod{8}$
 $x_1-x_2+x_3-x_4$ $+2x_6-2x_7$ $\equiv 0\pmod{8}$
 $x_1+x_2+x_3+x_4-2x_5$ $-2x_8\equiv 0\pmod{8}$
 $x_1-x_2+x_3-x_4$ $-2x_6+2x_7$ $\equiv 0\pmod{8}$
 (2.2) $x_1+x_2-x_3-x_4+2x_5$ $-2x_8\equiv 0\pmod{8}$
 $x_1-x_2-x_3+x_4$ $-2x_6-2x_7$ $\equiv 0\pmod{8}$
 $x_1+x_2-x_3-x_4-2x_5$ $+2x_8\equiv 0\pmod{8}$
 $x_1-x_2-x_3+x_4$ $+2x_6+2x_7$ $\equiv 0\pmod{8}$

It is easy to see by row reduction that the above system is equivalent to the following system of congruences:

$$x_{5} \equiv x_{8} \qquad (\text{mod } 2)$$

$$x_{6} \equiv x_{7} \qquad (\text{mod } 2)$$

$$x_{4} \equiv x_{5} + x_{6} \qquad (\text{mod } 2)$$

$$x_{3} + x_{4} \equiv 2x_{5} \qquad (\text{mod } 4)$$

$$x_{2} + x_{4} \equiv x_{5} + x_{6} - x_{7} + x_{8} \qquad (\text{mod } 4)$$

$$x_{1} + x_{2} + x_{3} + x_{4} \equiv 2x_{5} + 2x_{8} \pmod{8}$$

An element $(x_1, ..., x_8)$ of $\theta(\mathbf{Z}D_8)$ is a unit of $\theta(\mathbf{Z}D_8)$ if and only if the inverse $(x_1, ..., x_8)^{-1}$ exists and is in $\theta(\mathbf{Z}D_8)$. Hence $(x_1, ..., x_8)$ is a unit of $\theta(\mathbf{Z}D_8)$ if and only if the following hold:

$$x_1 = \pm 1$$
, $x_2 = \pm 1$, $x_3 = \pm 1$, $x_4 = \pm 1$, $\delta = x_5 x_8 - x_6 x_7 = \pm 1$, $(x_1, ..., x_8)$ satisfies (2.3), and $(x_1, ..., x_8)^{-1} = (x_1, x_2, x_3, x_4, \delta x_8 - \delta x_6, -\delta x_7, \delta x_5)$ satisfies (2.3).

Note that $x_5 \equiv x_8 \pmod{2}$ is equivalent to

$$x_5 + x_8 \equiv 0 \pmod{4}$$
 or $x_5 + x_8 \equiv 2 \pmod{4}$

and $\pm 1 = x_4 \equiv x_5 + x_6 \pmod{2}$ is equivalent to $x_5 \not\equiv x_6 \pmod{2}$. Therefore, $(x_1, ..., x_8)$ is a unit of $\theta(\mathbf{Z}D_8)$ if and only if $(x_1, ..., x_8)$ satisfies the following:

$$x_1 = \pm 1, x_2 = \pm 1, x_3 = \pm 1, x_4 = \pm 1, \delta = x_5 x_8 - x_6 x_7 = \pm 1,$$

 $x_5 + x_8 \equiv 0 \pmod{4} \text{ or } x_5 + x_8 \equiv 2 \pmod{4},$
 $x_6 \equiv x_7 \pmod{2},$

(2.4)
$$x_5 \not\equiv x_6 \pmod{2}$$
,
 $x_3 + x_4 \equiv 2x_5 \equiv 2\delta x_8 \pmod{4}$,
 $x_2 + x_4 \equiv x_5 + x_8 + x_6 - x_7 \equiv \delta(x_5 + x_8) - \delta(x_6 - x_7) \pmod{4}$,
 $x_1 + x_2 + x_3 + x_4 \equiv 2(x_5 + x_8) \equiv 2\delta(x_5 + x_8) \pmod{8}$.

Finally we determine the unit group $U(\theta \mathbf{Z}D_8)$ of the ring $\theta(\mathbf{Z}D_8)$. In fact, we will show that $U(\theta \mathbf{Z}D_8)$ is the set of all $(x_1, ..., x_8)$ satisfying one of the following:

(i)
$$x_1=x_2=x_3=x_4=\pm 1$$
, $\delta=1$
 $x_5\equiv x_8\equiv 1 \text{ or } -1 \pmod{4}$, $x_6\equiv x_7\equiv 0 \text{ or } 2 \pmod{4}$

(ii)
$$x_1 = -x_2 = x_3 = -x_4 = \pm 1, \delta = 1$$

(2.5)
$$x_5 \equiv x_8 \equiv 0 \text{ or } 2 \pmod{4}, x_6 \equiv -x_7 \equiv 1 \text{ or } -1 \pmod{4}$$

(iii)
$$x_1=x_2=-x_3=-x_4=\pm 1$$
, $\delta=-1$
 $x_5=-x_8=1$ or $-1 \pmod 4$, $x_6=x_7=0$ or $2 \pmod 4$

(iv)
$$x_1 = -x_2 = -x_3 = x_4 = \pm 1$$
, $\delta = -1$
 $x_5 \equiv x_8 \equiv 0$ or 2 (mod 4), $x_6 \equiv x_7 \equiv 1$ or -1 (mod 4)

In order to prove this fact, let $(x_1, ..., x_8)$ be a unit of $\theta(\mathbb{Z}D_8)$. Then we have either $x_5+x_8\equiv 0 \pmod{4}$ or $x_5+x_8\equiv 2 \pmod{4}$.

First consider the case when $x_5+x_8\equiv 2\pmod{4}$. It follows from (2.4) that $x_1+x_2+x_3+x_4\equiv 4\pmod{8}$ and $x_2+x_4\equiv 2+(x_6-x_7)\pmod{4}$. Hence

$$x_1=x_2=x_3=x_4=\pm 1$$
, $2\equiv 2x_2\equiv 2+(x_6-x_7) \pmod{4}$, $2\equiv 2x_3\equiv 2x_5 \pmod{4}$.

Thus $x_6 \equiv x_7 \pmod{4}$, $x_5 \equiv 1 \pmod{2}$ and so $x_6 \equiv 0 \pmod{2}$. By the above results it is easy to see that

$$x_5 \equiv x_8 \equiv 1 \text{ or } -1 \pmod{4},$$

 $x_6 \equiv x_7 \equiv 0 \text{ or } 2 \pmod{4}.$

Moreover, $\delta = x_5x_8 - x_6x_7 \equiv 1 \pmod{4}$ and so $\delta = 1$. Hence the case (i) holds. Next consider the case when $x_5 + x_8 \equiv 0 \pmod{4}$. It follows from (2.4) that $x_1 + x_2 + x_3 + x_4 \equiv 0 \pmod{8}$ and $x_2 + x_4 \equiv x_6 - x_7 \pmod{4}$. Hence we have $x_1 + x_2 + x_3 + x_4 = 0$. Note that $x_2 = x_4$ or $x_2 + x_4 = 0$. If $x_2 = x_4$, then $2 \equiv 2x_2 \equiv x_6 - x_7 \pmod{4}$ and $x_1 + x_3 \equiv -2x_2 \equiv 2 \pmod{4}$. Therefore, $x_1 = x_3$ and so $x_1 = -x_2 = x_3 = -x_4 = \pm 1$. Thus $0 \equiv 2x_5 \pmod{4}$ and so $x_5 \equiv 0 \pmod{2}$ and $x_6 \equiv 1 \pmod{2}$. By the above results it is easy to see that

$$x_5 \equiv x_8 \equiv 0 \text{ or } 2 \pmod{4},$$

 $x_6 \equiv -x_7 \equiv 1 \text{ or } -1 \pmod{4}.$

Moreover, $\delta = x_5x_8 - x_6x_7 \equiv 1 \pmod{4}$ and so $\delta = 1$. Hence the case (ii) holds. Now assume that $x_2 + x_4 = 0$. Then $x_1 + x_3 = 0$ and $x_6 - x_7 \equiv 0 \pmod{4}$. Hence we have $x_1 = x_2 = -x_3 = -x_4 = \pm 1$ or $x_1 = -x_2 = -x_3 = x_4 = \pm 1$. If $x_1 = x_2 = -x_3 = -x_4 = \pm 1$, then $2 \equiv 2x_3 \equiv 2x_5 \pmod{4}$ and so $x_5 \equiv 1 \pmod{2}$, $x_6 \equiv 0 \pmod{2}$. Thus we have

$$x_5 \equiv -x_8 \equiv 1 \text{ or } -1 \pmod{4},$$

 $x_6 \equiv x_7 \equiv 0 \text{ or } 2 \pmod{4},$
 $\delta = -1.$

Hence the case (iii) holds. On the other hand, if $x_1 = -x_2 = -x_3 = x_4 = \pm 1$, then $0 \equiv 2x_5 \pmod{4}$ and so $x_5 \equiv 0 \pmod{2}$, $x_6 \equiv 1 \pmod{2}$. Thus we have

$$x_5 \equiv x_8 \equiv 0 \text{ or } 2 \pmod{4},$$

 $x_6 \equiv x_7 \equiv 1 \text{ or } -1 \pmod{4},$
 $\delta = -1.$

Therefore, the case (iv) holds and all.

Conversely, it is not hard to show that if an element $(x_1, ..., x_8)$ of $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus M_2(\mathbb{Z})$ satisfies any one of the conditions (i) \sim (iv) of (2.5) then it satisfies (2.4) and so it is a unit of $\theta(\mathbb{Z}D_8)$.

The group homomorphism of $U(\theta \mathbb{Z}D_8)$ into $U(\mathbb{Z} \oplus M_2(\mathbb{Z}))$ defined by

$$(x_1, x_2, x_3, x_4, \begin{bmatrix} x_5 & x_6 \\ x_7 & x_8 \end{bmatrix}) \longrightarrow (x_4, \begin{bmatrix} x_5 & x_6 \\ x_7 & x_8 \end{bmatrix})$$

is a monomorphism by (2.5). Moreover, the image of the map can be found from (2.5). Since $U(\mathbf{Z}D_8) \cong U(\theta \mathbf{Z}D_8)$, this completes the proof of Theorem.

REMARK. Using (2.1) and (2.5), we can obtain the following result. This has been proved in [1]:

The element

$$a_1 + a_2x + a_3x^2 + a_4x^3 + a_5y + a_6xy + a_7x^2y + a_8x^3y$$

of $\mathbf{Z}D_8$ is a unit if and only if one of the following holds.

(1)
$$a_1+a_3=\pm 1$$
, $a_2+a_4=0$, $a_5+a_7=0$, $a_6+a_8=0$, $(a_1-a_3)^2-4a_5^2-4a_6^2+4a_2^2=1$

(2)
$$a_2+a_4=\pm 1$$
, $a_1+a_3=0$, $a_5+a_7=0$, $a_6+a_8=0$, $4a_1^2-4a_5^2-4a_6^2+(a_2-a_4)^2=1$

(3)
$$a_5+a_7=\pm 1$$
, $a_1+a_3=0$, $a_2+a_4=0$, $a_6+a_8=0$, $-4a_1^2+(a_5-a_7)^2+4a_6^2-4a_2^2=1$

(4)
$$a_6+a_8=\pm 1$$
, $a_1+a_3=0$, $a_2+a_4=0$, $a_5+a_7=0$, $-4a_1^2+4a_5^2+(a_6-a_8)^2-4a_2^2=1$

References

- 1. Cho, I.H., Projektive Moduln über Quaternionen und Diedergruppen, München. 4 (1974), 27-32.
- 2. Dornhoff, L., Group representation theory, Marcel Dekker, New York, 1971.
- 3. Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
- Passman, D.S., The algebraic structure of group rings, John Wiley & Sons, New York, 1977.
- Polcino Milies, C., The units of the integral group ring ZD₄, Bol. Soc. Brasil. Math. 4 (1972), 85-92.
- 6. Sehgal, S. K., Topics in group rings, Marcel Dekker, New York, 1978.

Inchon Teacher's College