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ON THE LOCAL CONVERGENCE IN MEASURE

By Donc M. CHUNG

Let (X,3, 1) be a measure space. Let M denote the set of all real valued
measurable functions on X, where we have identified functions which are
equal g-almost everywhere. It is well known that if g is finite, M is a com-
plete metric space with the metric

- [ f—gl
d(f,g)—Jdeﬂ, figeM
which is compatible with convergence in measure. Indeed, this fact follows
from the following known result [1]].

THEOREM 1. Let < f,> be a sequence of real wvalued measurable functions
on (X, B, 1) which is Cauchy in measure. Then there exists a subsequence which
converges almost everywhere and in measure to a real valued measurable function

fon X.

In this note we shall show that if g is o-finite, Theorem 1 can be exten-
ded (see Theorem 2) to apply to sequences of real valued measurable func-
tions which are Cauchy in weaker type of convergence than convergence in
measure. Now we begin with a definition.

DErFINITION. Let £, fi1, f, ... be real valued measurable functions on (X, %, ).

The sequence < f,> is said to converge locally in measure to f if for each
a>0, and E€B with p(E) < eo

l,i.g,l,#({“TEE 2 fa(z) —F(2) | 2a})= 0.
The sequence < f,> is said to be Cauchy locally in measure if for each
a>0, and E€B with p(E) < e
ml,,i_l.lolo”( {z€E ¢ |fulz) ~f,(2) | 2a})= 0.
Obviously, if < f,> converges in measure to f, then < f,> converges

locally in measure to f, but the converse need not be valid. For example,
with X=[0, o7 and Lebesgue measure g, the sequence

1, n<zx<n-+1
0, otherwise

Fa(2) ={
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converges to zero locally in measure but fails to converge to zero in meas-
ure. Thus local convergence in measure is weaker than convergence in me-
asure.

THEOREM 2. Let (X, B, u) be a o—finite measure space and < f,> a sequence
of real valued measurable functions on X which is Cauchy locally in measure.
Then there exists @ subsequence which converges almost everywhere and locally
in measure to a real valued measurable function f on X.

Proof. Since g is o-finite, there exists a sequence <E,>> of disjoint sub-
sets of X in B such that u(E,)<{co and E—j; E,=X. Denote by y, the rest-

riction of g to E,, by B(E,) the o-algebra {BNE, : B8}, and by f,™
the rectriction of f, to E,.. Since the sequence < f,V>> is a Cauchy sequence
of real valued measurable functions on (E;, B(E,), ), it follows from The-
orem 1 that there exists a subsequence < f; ;¥ > of <f,> which con-
verges p;—almost everywhere. Thus we have N,€8B(E;) such that x£(N;)=0
and <fy,;®(x)> converges for each & E;— Nj. Since th esequence < f; ;>
is a subsequence of < f,>, by the same argument as above, we can choose a
subsequence < f5 ;> of <f1,;>> such that <f, ;¥ (z)> converges y;~almost
everywhere. Thus we have N,&8(E,) such that £(N,) =0 and <f, ;? (z)>
converges for each x€E,—N,. If we continue this process, for each j>1,
we will obtain a subsequence < f; ;> of <f,> such that <f; ;"> con-
verges on (E;, B(E;), ¢;) off a g; null set N;. Furthermore, <f; ;> is a

subsequence of < fj-; >, where fy ,=f; for all . Now let N= G1Nj’ then
Pt

#(N) 22;1_,- (N;)=0 since E;’s are disjoint. Hence the subsequence < f; ;>
of < f,> converges on X off the ¢ null set N. If we define f by

f(x)= fk,k(x)’ T&N

0, TEN

then the subsequence < f; ;> converges almost everywhere to the real val-
ued measurable function f on X

To see that < f} ;> converges locally in measure to f, for each z let f™
denote the restriction of f to E,. Since < f; ;"> converges to £ almost
everywhere on the finite measure space (E,, B(E,), &,) it follows from Ego-
roff’s theorem ([1], p.74) that <f; ;> converges to f® in measure on
E,. Hence < f; ;> convreges locally in measure to f.

COROLLARY 3. Let (X, B, ) and < f,> be as in Theorem 2. Then ther:
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exists a real valued measurable function on X to which the sequence converges
locally in measure. This limit function f is uniquely determined almost every-
where,

Proof. We have seen that there exists a subsequence <(f; ;> of <f,>
which converges locally in measure to a function f. Now it is enough to
show that the original sequence converges locally in measure to f. However,
this can be done by retracing the proof of Corollary 7.7 [1] with E, in place
of X, where E, is as in the proof of Theorem 2.

Let (X,%®, ) be a o-finite measure space and <B,> an increasing seque-
nce of subsets of X in B with x(B,) <co. Define a metric d, on M by

- |f—gl
dn(fv g) _JB”"W___g‘I—dﬂ, f, gEﬂR.

Then, it is easy to see that local convergence in measure is compatible with
the metric on M

—527d.(f,g)
d(fsg) ,,L;ll‘f‘dn(f’g)-

Thus, Corollary 3 shows that m becomes a complete metric space with the

metric d.

The following corollary can be easily shown by using Theorem2 and st-
andard arguments (see [17).

COROLLARY 4. Let (X,B,1) be a o—finite measure space. Then Fatou's

Lemma and the Monotone and Lebesgue Dominate Convergence theorem on X remain
valid if convergence in measure is replaced by local convergence in measure.
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