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ON THE LOCAL CONVERGENCE IN MEASURE

By DONG M. CHUNG

Let (X, 58, fl.) be a measure space. Let IDl denote the set of all real valued
measurable functions on X, where we have identified functions which are
equal fl.-almost everywhere. It is well known that if fl. is finite, IDl is a com­
plete metric space with the metric

d(/,g)=fx1-V;f:'~1 dfl., l,gEIDl

which is compatible with convergence in measure. Indeed, this fact follows
from the following known result [lJ.

THEOREM 1. Let <I,,> be a sequence 01 real valued measurable lunctions
on (X, 58, fl.) which is Cauchy in measure. Then there exists a subsequence which
converges almost everywhere and in measure to a real valued measurable lunction
Ion X.

In this note we shall show that if p. is (J-:finite, Theorem 1 can be exten­
ded (see Theorem 2) to apply to sequences of real valued measurable func­
tions which are Cauchy in weaker type of convergence than convergence in
measure. Now we begin with a definition.

DEFINITION. Letl,fh/2, ... be real valued measurable functions on (X, 58, p.).
The sequence <In> is said to converge locally in measure to I if for each
0:>0, and EE58 with fl.(E)<co

Hm fl.( {xEE: Ifn(x) -f(x) I ~a}) = O........
The sequence <In> is said to be Cauchy locally in measure if for each
a>O, and EE58 with fl.(E)<co

Hm fl.( {xEE: Ifm(x) -fn(x) I~a}) = o.
m,n-oo

Obviously, if <In> converges in measure to f, then <In> converges
locally in measure to f, but the converse need not be valid. For example,
with X=[O, co] and Lebesgue measure f.t, the sequence

fn(x) ={ 1, n<x~~+ 1
0, otherWIse
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converges to zero locally in measure but fails to converge to zero in meas­
ure. Thus local convergence in measure is weaker than convergence in me­
asure.

THEOREM 2. Let (X, fB, p,) be a (J-finite measure space and < fn> a sequence
01 real valued measurable functions on X which is Cauchy locally in measure.
Then there exists a subsequence which converges almost everywhere and locally
in measure to a real valued measurable function f on X.

Proof. Since p. is (J-finite, there exists a sequence <En> of disjoint sub-
00

sets of X in fB such that p.(En)<oo and U En=X. Denote by P.m the rest-
..=1

riction of p, to Em' by fB (Em) the (J-algebra {B nEm : BE fB}, and by fn (m)
the rectriction of In to Em. Since the sequence <In(D> is a Cauchy sequence
of real valued measurable functions on (Eh fB (El), P.l), it follows from The­
orem 1 that there exists a subsequence < fl. k(I) > of <Inm> which con­
verges p.l-almost everywhere. Thus we have NI E f8 (El) such that p, (NI) = 0
and <f1,k(I)(x» converges for eachxEEI-Nl. Since th esequence <fl,k>
is a subsequence of <In>, by the same argument as above, we can choose a
subsequence <f2,k> of <fl,k> such that <12.k(2) (x» converges p.2-almost
everywhere. Thus we have N 2Ef8(E2) such that p.(N2) =0 and <f2.k(2) (x»
converges for each xEE2-N2• If we continue this process, for each }21,
we will obtain a subsequence <Ij,k> of <In> such that <Ij.k(j» con­
verges on (Ei>f8(Ej ),p.j) off a p.j null set N j. Furthermore, <fj,k> is a

subsequence of <Ij-l k>' where fo k h for all k. Now let N= UNi> then
., }=1

00

p,(N) = ~p.j(Nj) =0 since E/s are disjoint. Hence the subsequence <fk,k>
;=1

of < fn> converges on X off the p. null set N. If we define I by

jh,k(X), xf£N
f(x) =

0, xEN

then the subsequence <h.k> converges almost everywhere to the real val­
ued measurable function f on X

To see that <fu> converges locally in measure to f, for each n let!''')
denote the restriction of I to E". Since <h,/n» converges to !'n) almost
everywhere on the finite measure space (E", fB (E,,), p.,,) it follows from Ego­
roff's theorem ([1], p.74) that <Ik,k(n» converges to !'n) in measure on
En· Hence <h, k> convreges locally in measure to I.

CoROLLARY 3. Let (X, f8, p.) and <In> be as in Theorem 2. Then tller.J
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exists a real valued measurable function on X to which the sequence converges
locally in measure. This limit functirm f is uniquely determined almost every­
where.

Proof. We have seen that there exists a subsequence <h.k> of <In>
which converges locally in measure to a function I. Now it is enough to
show that the original sequence converges locally in measure to f. However,
this can be done by retracing the proof of Corollary 7. 7 [lJ with En in place
of X, where En is as in the proof of Theorem 2.

Let (X, 58, f.t) be a a-finite measure space and <Bn> an increasing seque­
nce of subsets of X in 58 with f.t(Bn) <00. Define a metric dn on illl by

dn(f, g) = tn 1~f:'~1 df.t, I, gE'JJt

Then, it is easy to see that local convergence in measure is compatible with
the metric on illl

d(f, g) = L 2-
n
d" ( I, g) .

,,=11+dn(/, g)

Thus, Corollary 3 shows that m becomes a complete metric space with the
metric d.

The following corollary can be easily shown by using Theorem2 and st­
andard arguments (see DJ).

COROLLARY 4. Let (X, 58, f.t) be a a-finite measure space. Then Fatou's
Lemma and the Monotone and Lebesgue Dominate Convergence theorem on X remain
valid if convergence in measure is replaced by local convergence in measure.
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