ON THE SUBMARTINGALE CONVERGENCE IN BURKHOLDER TRANSFORMS

BY HI-CHUN EUN AND GIL-SEOB RHIE

1. Introduction

Let (Q, F, P) be a probability space and $(F_n, n \in \mathbb{N})$ an increasing sequence of sub- σ -algebras of F. Let $X = (X_n, F_n, n \in \mathbb{N})$ be a submartingale on (Q, F, P), and let $v = (v_n, n \in \mathbb{N})$ be a predictable sequence: $v_k : Q \to \mathbb{R}$ is F_{k-1} -measurable, $k \ge 1$, and $F_0 = F_1$.

DEFINITION 1.1. The transform of X, $T(X) = (T_1(X), T_2(X), ...)$, will be defined as $T_n(X) = \sum_{k=1}^n v_k x_k$ where $x_1 = X_1$, $x_2 = X_2 - X_1$, ..., $X_n = X_n - X_{n-1}$,

Burkholder [2] defined the concept of martingale transforms and studied its convergence. In this paper we obtain some results on the convergence of the transforms of an L^1 -bounded submartingale.

Our first result (Theorem 2.2) is that the transform of any L^1 -bounded positive increasing submartingale converges almost surely (a. s.) on $\{v^* < \infty\}$ where $v^*(\omega) = \sup_n |v_n(\omega)|$, $\omega \in \Omega$. This result implies that the transform of any L^1 -bounded increasing process converges a. s. on $\{v^* < \infty\}$.

The second result (Theorem 2.3) is that the transform of any L^1 -bounded submartingale converges a.s. on $\{v^* < \infty\}$. This result is surely a generalization of Theorem 1 of $\lceil 2 \rceil$.

The third result (Theorem 2.6) is that for every stopping time T the stopped r.v. X_T is integrable for any L^1 -bounded submartingale $(X_n, F_n, n \in \mathbb{N})$.

The final result (Theorem 2.8) is a generalization of Theorem 3 of [2]. This final result will be proved by using our result, Theorem 2.7 which is a generalization of a result of [1].

The following propostion will be used in the sequel. This proposition is known as the Doob's decomposition theorem (see details in [6] or in [7]).

PROPOSITION 1.2. For any submartingale $(X_n, F_n, n \in \mathbb{N})$, there exist uniquely a martingale $(Y_n, F_n, n \in \mathbb{N})$ and an increasing process $(A_n, F_n, n \in \mathbb{N})$ such that, for each $n \in \mathbb{N}$ $X_n = Y_n + A_n$.

REMARK 1.3. If the submartingale $(X_n, n \in \mathbb{N})$ is L^1 -bounded [uniformly integrable (u.i.), resp.] then both the martingale $(Y_n, n \in \mathbb{N})$ and the increasing process $(A_n, n \in \mathbb{N})$ are also L^1 -bounded [u.i. resp]. In particular we remark that the increasing process can be regarded as an increasing positive submartingale.

2. Main results

LEMMA 2.1 If g is a transform of a uniformly bounded submartingale f and $v^* \le 1$, then g converges a.s.

Proof. Refer to the step (ii) of Theorem 1 of [2].

THEOREM 2.2. Let $(X_n, n \in \mathbb{N})$ be an L^1 -bounded nonnegative increasing submartingale. Then the transform $(T_n(X), n \in \mathbb{N})$ converges a.s. on $\{v^* < \infty\}$.

Proof. Let $v^* \le 1$ and let c > 0. Then $\hat{X}_n = \min(X_n, c)$ defines a uniformly bounded submartingale $(\hat{X}_n, n \in \mathbb{N})$. By Lemma 2.1, $T_n(X)$ converges a.s. But since $T_n(X) = T_n(\hat{X})$ if $X^*(\omega) = \sup_n |X_n(\omega)| < c$, $\omega \in \mathcal{Q}$, we have that $T_n(X)$ converges a.s. on the set $\{X^* < c\}$. Since $(X_n, n \in \mathbb{N})$ is L^{1-} bounded, it follows that $EX^* = E(\lim_n X_n) \le \sup_n EX_n < \infty$. Hence we have $P(X^* < \infty) = 1$. Therefore, letting $c \to \infty$ we have that

(2.1) $T_n(X)$ converges a.s. if $v^* \le 1$.

Let $\hat{v}_n(\omega) = v_n(\omega)$ if $|v_n(\omega)| < c$, $\hat{v}_n(\omega) = 0$ otherwise. Let $\hat{T}_n(X)$ be the transform of X under the uniformly bounded multiplier sequence $(\hat{v}_n, n \in \mathbb{N})$. Clearly, (2.1) implies that $\hat{T}_n(X)$ converges a.s. Since $T_n(X) = \hat{T}_n(X)$ if $v^* < c$, we have that $T_n(X)$ converges a.s. on $\{v^* < c\}$. Since c is arbitrary, it follows that $T_n(X)$ converges a.s. on $\{v^* < \infty\}$.

Using Doob's decomposition, we obtain that the transform of any L^{1-} bounded submartingale converges a. s. on $\{v^* < \infty\}$. This theorem is a generalized result of Theorem 1 of [2].

THEOREM 2.3. Let $(X_n, n \in \mathbb{N})$ be an L¹-bounded submartingale. Then the transform $(T_n(X), n \in \mathbb{N})$ converges a.s. on $\{v^* < \infty\}$.

Proof. Let $X_n = Y_n + A_n$, $n \in \mathbb{N}$, be the Doob's decomposition of $(X_n, n \in \mathbb{N})$. Then we have $T_n(X) = T_n(Y) + T_n(A)$. Therefore, by Theorem 1 of [2], Theorem 2.2 and Remark 1.3 we obtain the desired result.

COROLLARY 2.4 Let $(X_n, n \in \mathbb{N})$ be an L¹-bounded submartingale. If A is an atom of F, then $\sum_{n=1}^{\infty} |x_n| < \infty$ a.s. on A.

Proof. There is a real number sequence $a=(a_1,a_2,...)$ such that $x_n=a_n$ a.s. on A, otherwise there would be a subset B of A in F such that 0 < P(B) < P(A), contradicting the assumption that A is an atom. Let $v_n(\omega)=1$ if $a_n \ge 0$, =-1 if $a_n < 0$, $\omega \in \Omega$. By Theorem 2.3, $T_n(X)=\sum_{k=1}^n v_k x_k$ converges a.s. on A.

PROPOSITION 2.5. Let $(X_n, n \in \mathbb{N})$ is a martingale or a nonnegative submartingale which is bounded in L^1 . Then X_T is integrable for every stopping time T.

The above proposition can be generalized as the following theorem.

THEOREM 2.6. Let $(X_n, n \in \mathbb{N})$ be an L^1 -bounded submartingale. Then for any stopping time T, X_T is integrable.

Proof. Let $X_n = Y_n + A_n$ be the Doob's decomposition. By Proposition 2.5 and Remark 1.3, we have

$$E|X_T| \leq E|Y_T| + EA_{\infty} < \infty.$$

This completes the proof.

THEOREM 2.7. Let $(X_n, F_n, n \in \mathbb{N})$ be an L^1 -bounded submartingale. Then its square function $S(X) \equiv \lim_{n} \left(\sum_{k=1}^{n} x_k^2 \right)^{\frac{1}{2}}$ is finite a.s.

Proof. By Proposition 1.2 and Remark 1.3, there exist an L^1 -bounded martingale $(Y_n, F_n, n \in \mathbb{N})$ and a uniformly integrable increasing process $(A_n, F_n, n \in \mathbb{N})$ such that $X_n = Y_n + A_n$ and $\lim_{n \to \infty} A_n = A_{\infty}$ is integrable.

Since for any a>0, b>0, $(a+b)^2 \le 2^2(a^2+b^2)$, we obtain, for each $n \in \mathbb{N}$

(2.2)
$$S_n^2(X) = \sum_{k=1}^n x_k^2 \leq 4(S_n^2(Y) + S_n^2(A)).$$

Since for any a>0, b>0, $(a+b)^{\frac{1}{2}} \le a^{\frac{1}{2}} + b^{\frac{1}{2}}$, it follows from (2.2) that for each n, we have

(2.3)
$$S_n(X) \leq 2(S_n(Y) + S_n(A)).$$

From the nonnegativity of $S_n(A)$ and A_n , and since $S_n^2(A) \leq A_n^2$, we obtain, for each $n \in \mathbb{N}$

$$(2.4) S_n(A) \leqslant A_n$$

Taking the supremum on the both sides of (2.3) and (2.4), we obtain that $S(X) \leq 2(S(Y) + S(A))$ and $S(A) \leq A_{\infty}$ which imply

$$(2.5) S(X) \leq 2(S(Y) + A_{\infty}).$$

By Austin [1] and the integrability of A_{∞} and (2.5), we obtain $P(S(X) < \infty) = 1$. The proof is completed.

The following theorem is a generalized result of Theorem 3 of [2]. To prove this theorem we will use Theorem 2.7.

THEOREM 2.8. Let $X = (X_n, F_n, n \in \mathbb{N})$ be an L^1 -bounded submartingale and $Y = (Y_n, F_n, n \in \mathbb{N})$ a martingale. If $S_n(Y) \leq S_n(X)$, $n \in \mathbb{N}$, then Y_n converges a.s.

Proof. Let c>0, and let $m(\omega)=\inf\{n:|X_n(\omega)|\geq c \text{ or } S_n(X(\omega))\geq c\}$ where $\inf \phi=\infty$. Then $ES_m(X)<\infty$. For

$$S_m(X) < c + |x_m| < 2c + |X_m| \quad \text{on } \{m < \infty\},$$

$$S_m(X) \le c \text{ on } \{m = \infty\}.$$

By Theorem 2.6, $E|X_m| < \infty$ which implies $ES_m(X) < \infty$.

Let $\hat{Y}_n = Y_{m \wedge n}$. Then $(\hat{Y}_n, n \in \mathbb{N})$ is a martingale by the Doob's optional stopping theorem (see details in [6]). Here we have used our assumption that X and Y are relative to the same sequence of sub- σ -algebras of F. Clearly, $S(\hat{Y}) = S_m(Y) \leq S_m(X)$. Therefore, $ES(\hat{Y}) < \infty$ and by Theorem 2 of [2], \hat{Y} converges a.s.

On the set $\{X^* < c, S(X) < c\}$, we have $m = \infty$ and $Y = \hat{Y}$. Since X^* and S(X) are finite a.s. by the L^1 -boundedness of X and Theorem 2.7, it follows that Y converges a.s..

References

- 1. Austin, D.G., A sample function property of martingales, Ann. Math. Stat., 37 (1966), 1396-7.
- 2. Burkholder, D.L., Martingale transforms, Ann. Math. Stat, 37 (1966), 1494-1504.
- Burkholder, D. L., Distribution function inequalities for martingales, Ann. Proba., 1 (1973), 19-42.
- 4. Chow, Y.S., Teicher, H., Probability theory, Springer Verlag, New York, 1978.
- 5. Chung, K.L., A course in probability theory, Academic Press, New York, 1974.
- 6. Doob, J.L., Stochastic processes, Wiley, New York, 1953.
- 7. Neveu, J., Discrete parameter martingales, North-Holland, New York, 1975.

Korea University