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ON THE SUBMARTINGALE CONVERGENCE
IN BURKHOLDER TRANSFORMS

By HI-eHUN EuN AND GIL-SEOB RHIE

1. Introduction

Let (D, F, P) be a probability space and (F", nEN) an increasing sequence
of sub-O"-algebras of F. Let X= (X", F", nEN) be a submartingale on (D,
F, P), and let v= (v", nEN) be a predictable sequence: Vk: D-»R is Fk-c
measurable, k21, and Fo=FI •

DEFINITION 1.1. The transform of X, T(X)=(TI(X), T2(X), ...), will be
..

defined as Tn(X) = L;VkXk where Xl =Xb X2=X2-Xb ••• , Xn=Xn-Xn- l , ••••
• =1

Burkholder [2J defined the concept of martingale transforms and studied
its convergence. In this paper we obtain some results on the convergence of
the transforms of an V-bounded submartingale.

Our first result (Theorem 2.2) is' that the transform of any V-bounded
positive increasing submartingale converges almost surely (a. s.) on {v*<oo}
where v* (w) = sup IV n (w) I, wE D. This result implies that the transform of..
any V-bounded increasing process converges a. s. on {v*<oo}.

The second result (Theorem 2.3) is that the transform of any V-bounded
submartingale converges a. s. on {v*<oo}. This result is surely a generali­
zation of Theorem 1 of [2J.

The third result (Theorem 2.6) is that for every stopping time T the
stopped r. v. XT is integrable for any V-bounded submartingale (X", F",
nEN).

The final result (Theorem 2. 8) is a generalization of Theorem 3 of [2J.
This final result will be proved by using our result, Theorem 2. 7 which is
a generalization of a result of [1].

The following propostion will be used in the sequel. This proposition is
known as the Doob's decomposition theorem (see details in [6J or in [7J).

PROPOSITION 1.2. For any submartingale (X", F", nEN), there exist uniquely
a martingale (Y", F", nEN) and an increasing process (A", F", nEN) such
that, for each nEN X n= Yn+An.
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REMARK 1. 3. If the submartingale (Xm nEN) is 'V-bounded [uniformly
integrable (u. i. ), resp. J then both the martingale (Ym nE N) and the in­
creasing process (Am nEN) are also V-bounded [u. i. resp]. In particular
we remark that the increasing process can be regarded as an increasing po­
sitive submartingale.

2. Main results

LEMMA 2. 1 If g is a transform of a uniformly bounded submartingale f and
v*:S: 1, then g converges a. s.

Proof. Refer to the step (ii) of Theorem 1 of [2].

THEOREM 2. 2. Let (Xm nEN) be an V-bounded nonnegative increasing sub­
martingale. Then the transform (T,,(X), nEN) converges a. s. on {v*<oo}.

Proof. Let v*:S:l and let c>O. Then X,,=min (X"' c) defines a uniform­
ly bounded submartingale (Xm nEN). By Lemma 2.1, T,,(X) converges
a.s. But since T,,(X)=T,,(X) if X* (m)==suPI X,,(w) I<c, wED, we have..
that Tn(X) converges a. s. on the set {X*<c}. Since (X"' nEN) is V­
bounded, it follows that EX*=E( Hm X n ) :S:;sup EX,,<oo. Hence we have.. ..
P(X*<oo) =1. Therefore, letting c~oo we have that

(2. 1) T n(X) converges a. s. if v*:S: 1. .

Let v,,(w) =v,,(m) if Iv,,(m) I<c, vn(m) =0 otherwise. Let t,,(X) be the
transform of X under the uniformly bounded multiplier sequence (v", nEN).
Clearly, (2. 1) implies that tIt (X) converges a. s. Since T" (X) = T" (X) if
v*<c, we have that T,,(X) converges a. s. on {v*<c}. Since c is arbitrary,
it follows that T,,(X) converges a. s. on {v*<oo).

Using Doob's decomposition, we obtain that the transform of any V­
bounded submartingale converges a. s. on {v*<oo}. This theorem is a ge­
neralized result of Theorem 1 qf [2].

THEOREM 2.3. Let (Xm nEN) be an V-bounded submartingale. Then the
transform (Tn(X), nEN) converges a. s. on {v*<oo}.

Proof. Let X,,= Y"+A,,, nEN, be the Doob's decomposition of (X", nE
N). Then we have T,,(X) = Tn(Y) +T,,(A). Therefore, by Theorem 1 of
[2J, Theorem 2. 2 and Remark 1. 3 we obtain the desired result.

CoROLLARY 2.4 Let (Xm nEN) be an V-bounded submartingale. If A is an
QO

atom of F, then ~ I xnl <00 a. s. on A.
n=l
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Proof· There is a real number sequence a= (a!> a2, ...) such that xn=an
a. s. on A, otherwise there would be a subset B of A in F such that
0< P(B)<P(A), contradicting the assumption that A is an atom. Let

n

vn(w) =1 if an~O, = -1 if an<O, WED. By Theorem 2.3, Tn(X) = ~ VkXk
k=l

converges a. s. on A.

PROPOSITION 2.5. Let (Xm nEN) is a martingale or a nonnegative submar­
tingale which is bounded in V. Then X T is integrable for every stopping time
T.

The above proposition can be generalized as the following theorem.

THEOREM 2.6. Let (Xm nEN) be an V-bounded submartingale. Then for
any stopping time T, X T is integrable.

Proof. Let X n= Yn+An be the Doob's decomposition. By Proposition 2.5
and Remark 1. 3, we have

EIXTI ~EI YTI +EAoo<oo.

This completes the proof.

THEOREM 2.7. Let (Xm Fm nEN) be an V-bounded submartingale. Then
n 1

its square function S (X) == lim (~ Xj,2) T is finite a. s.
n k=l

Proof. By Proposition 1. 2 and Remark 1. 3, there exist an V-bounded
martingale (Ym Fm nEN) and a uniformly integrable increasing process (An,
Fm nEN) such that X n= Yn+An and Hm An=A", is integrable.

n

Since for any a>O, b>O, (a+b)2~22(a2+b2), we obtain, for each nEN

(2.2)

1 1 1

Since for any a>O, b>O, (a+b)T ~aT+b2 , it follows from (2.2) that
for each n, we have

(2.3) Sn(X) ~2(Sn(Y)+Sn(A).

From the nonnegativity of Sn(A) and Am and since Sn2(A) ~An2, we ob­
tain, for each nE N

(2.4) Sn(A) ~An

Taking the supremum on the both sides of (2.3) and (2.4), we obtain
that S (X) ~2 (S (Y) +S (A» and S (A) ~Aoo which imply

(2.5) SeX) ~2(S(Y)+Aoo).
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By Austin [IJ and the integrability Qf An and (2.5), we obtain P(S(X)
<00) = 1. The proof is completed.

The following theorem is a generalized result of Theorem 3 of [2J. To
prove this theorem we will use Theorem 2. 7.

THEOREM 2.8. Let X= (Xm Fm nEN) be an V-bounded submartingale and
Y= (Ym Fm nEN) a martingale. If Sn(Y) ~Sn(X), nEN, then Yn converges
a. s.

Proof. Let c>o, and let mew) =inf {n : IXn(w) I~c or Sn(X(w» >cJ whe­
re inf~=oo. Then ESm(X)<co. For

Sm(X)<c+ Ixml <2c+ IXml on {m<oo} ,

Sm(X) ~c on {m=oo}.

By Theorem 2. 6, El X mI<co which implies ESm(X) <00.

Let Y'n= Y mAn. Then (Y'm nEN) is a martingale by the Doob's optional
stopping theorem (see details in [6J). Here we have used our assumption
that X and Y are relative to the same sequence of sub-O'-algebras of F.
Clearly, S(Y') =Sm(Y) ~Sm(X). Therefore, ESeY')<oo and by Theorem 2
of [2J, Y' converges a. s.

On the set {X*<c, S(X)<c}, we have m=OO and Y=Y'. Since X* and
S eX) are finite a. s. by the D-boundedness of X and Theorem 2. 7, it foll­
ows that Y converges a. s..
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