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ON THE SUBMARTINGALE CONVERGENCE
IN BURKHOLDER TRANSFORMS

BY Hi-CHUN EUN AND GIL-SEOB RHIE

1. Introduection

Let (Q, F, P) be a probability space and (F,, z&N) an increasing sequence
of sub—s-algebras of F. Let X=(X,, F,,nN) be a submartingale on (&,
F, P), and let v={(v,,n€N) be a predictable sequence: v; : Q—R is Fp-4-
measurable, 2>1, and Fy=F,.

DEeFINITION 1. 1. The transform of X, T(X)=(T1(X), T»(X),...), will be
defined as T,(X) =Z‘}1vkxk where 2;1=X3, 22=Xo—Xp, vy X;,=X,— X115 o+ «

Burkholder [2] defined the concept of martingale transforms and studied
its convergence. In this paper we obtain some results on the convergence of
the transforms of an L!'-bounded submartingale.

Our first result (Theorem 2.2) is that the transform of any L!-bounded
positive increasing submartingale converges almost surely (a.s.) on {o*<(oo}
where v*(w) =sup|v,(w)|, w=Q. This result implies that the transform of

any L'-bounded increasing process converges a.s. on {v*< oo}.

The second result (Theorem 2.3) is that the transform of any L!-bounded
submartingale converges a.s. on {v*<(oo}. This result is surely a generali-
zation of Theorem 1 of [2].

The third result (Theorem 2.6) is that for every stopping time 7 the
stopped r.v. Xr is integrable for any ZLl-bounded submartingale (X, F,,
neN).

The final result (Theorem 2.8) is a generalization of Theorem 3 of [2].
This final result will be proved by using our result, Theorem 2.7 which is
a generalization of a result of [1].

The following propostion will be used in the sequel. This proposition is
known as the Doob’s decomposition theorem (see details in [6] or in [7]).

PROPOSITION 1.2. For any submartingale (X,, F,, nEN), there exist uniquely
a martingale (Y,, F,,nEN) and an increasing process (A, F,,n&N) such
that, for each nN X,=Y,F+A,
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REMARK 1.3. If the submartingale (X,, €N) is "L'-bounded [uniformly
integrable (u.i.), resp.] then both the martingale (Y,,z&N) and the in-
creasing process (A,,nEN) are also L'-bounded [u.i. resp]. In particular
we remark that the increasing process can be regarded as an increasing po-
sitive submartingale.

2. Main results

LeMMA 2.1 If g is a transform of a uniformly bounded submartingale f and
v*<1, then g converges a.s.

Proof. Refer to the step (ii) of Theorem 1 of [2].

THEOREM 2. 2. Let (X,,nEN) be an L'-bounded nonnegative increasing sub-
martingale. Then the transform (T,(X),nEN)converges a.s. on {v*<co}.

Proof. Let v*<1 and let ¢>>0. Then X,=min (X,, ¢) defines a uniform-
ly bounded submartingale (X,, n&N). By Lemma 2.1, T,(X) converges
a.s. But since T,(X)=T,(X) if X*(w)=sup|X,(0)|<¢, w€Q, we have
that T,(X) converges a.s. on the set {X*<c}. Since (X, »€N) is L-
bounded, it follows that EX*=E(lim X, ) <sup EX,<co. Hence we have

P(X*<o0)=1. Therefore, letting ¢—>c0 we have that
(2.1) T,(X) converges a.s.if v*<1. ~

Let 9,(0) =v,(w) if |v,(w)]|<c, 9,(®) =0 otherwise. Let 7T,(X) be the
transform of X under the uniformly bounded multiplier sequence (3, n€N).
Clearly, (2.1) implies that T,(X) converges a.s. Since T, (X)="T,(X) if
v*<¢, we have that T,(X) converges a.s. on f{v*<c}. Since c is arbitrary,
it follows that 7,(X) converges a.s. on {v*<(00).

Using Doob’s decomposition, we obtain that the transform of any L'-
bounded submartingale converges a.s. on {v*<{oo}. This theorem is a ge-
neralized result of Theorem 1 of [2].

THEOREM 2.8. Let (X,, n&N) be an L'-bounded submartingale. Then the
transform (T,(X),nEN) converges a.s. on {v*< oo}.

Proof. Let X,=Y,+A, n<N, be the Doob’s decomposition of (X, ne
N). Then we have T,(X)=T,(Y)+ T,(A). Therefore, by Theorem 1 of
[2], Theorem 2.2 and Remark 1.3 we obtain the desired result.

COROLLARY 2.4 Let (X,,nEN) be an L'-bounded submartingale. If A is an

atom of F, then f_j}! z,| <0 a.s. on A.
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Proof. There is a real number sequence a=(ay,a, ...) such that z,=a,
a.s. on A, otherwise there would be a subset B of 4 in F such that
0<< P(B)<P(A), contradicting the assumption that A is an atom. Let

v.(w) =1 if a,20, =—1if 2,<0, w€Q. By Theorem 2.3, T,(X) =§,1 VT
converges a.s. on A.

PROPOSITION 2.5. Let (X,, nEN) is a martingale or a nonnegative submar-

tingale which is bounded in L'. Then X is integrable for every stopping time
T.

The above proposition can be generalized as the following theorem.

THEOREM 2.6. Let (X,, n€N) be an L'-bounded submartingale. Then for
any stopping time T, Xy is integrable.

Proof. Let X,=Y,+A, be the Doob’s decomgesition. By Proposition 2.5
and Remark 1.3, we have

E|X7|<E|Yp|+EA.<oo.
This completes the proof.
THEOREM 2.7. Let (X,, F,, n&N) be an L'-bounded submartingale. Then
its square function S(X)= lium (é}l .zkz)-"l_ is finite a.s.

Proof. By Proposition 1.2 and Remark 1.3, there exist an L!-bounded
martingale (Y,, F,,n&N) and a uniformly integrable increasing process (4,
F,, neN) such that X,=Y,+ A4, and lim A,=A. is integrable.

Since for any a>>0, 5>0, (a-+5)2<22(a®+b%), we obtain, for each neN
(2.2) 8, HX)=F 22 <4(S, (V) +5,2(4)).

Since for any a>0, >0, (a-l-b)IT <al7-}-bl7, it follows from (2.2) that
for each », we have
(2.3) S,(X)<2(8,(Y)+S8,(4)).

From the nonnegativity of S,(A) and 4,, and since S,2(4) <A4,%, we ob-
tain, for each neN

(2.4) S.(4) <4,

Taking the supremum on the both sides of (2.3) and (2.4), we obtain
that $(X)<2(S(Y)+S(4)) ;lnd S(A) <A. which imply

(2.5) S(X) <2(S(Y) +As).
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By Austin [1] and the integrability of A. and (2.5), we obtain P(S(X)
<{)=1. The proof is completed.

The following theorem is a generalized result of Theorem 3 of [2]. To
prove this theorem we will use Theorem 2.7.

THEOREM 2.8. Let X=(X,, F,, r&N) be an L'-bounded submartingale and
Y=(Y,, F,, n€N) a martingale. If S,(Y)<S,(X), nEN, then Y, converges
a.s.

Proof. Let ¢0, and let m(w)=inf{n : | X,(®)|=>c or §,(X(w)) > whe-
re inf =00, Then ES,(X)< . For

Sm(X)<C+l-Tml<2c+lel on {m<o°}:
Sp(X)<c on {m=o0}.

By Theorem 2.6, E|X,|< (o which implies ES,, (X) < co.

Let ¥,=Y,n. Then (¥, n=N) is a martingale by the Doob’s optional
stopping theorem (see details in [6]). Here we have used our assumption
that X and Y are relative to the same sequence of sub-o-algebras of F.
Clearly, S(¥)=8,(Y)<S8,(X). Therefore, ES(¥)<co and by Theorem 2
of [2], ¥ converges a.s.

On the set {X*<¢, S(X)<c}, we have m=c and Y=Y. Since X* and
S(X) are finite a.s. by the L'-boundedness of X and Theorem 2.7, it foll-
ows that Y converges a.s..
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