1@@&5&’%@@‘%‘<&$&?> Journal of the Korea Society of Mathematical Education
1982. 6. Vol. XX Jun. 1982. Vol. XX, No. 3

Jackknifing the density estimator and its property

By Lee Seung-Ho

Ajou University, Suweon, Korea

i. Introduction

The jackknife technique, since its introduction by Quenouille(1956) and Tukey(1958), it has been
demonstrated that, as s rough-and-ready statistical tool for reducing bias and producing approximate
confidence intervals, the jackknife can be beneficially applied in ratio problems,. in maximum
likelihood estimation, and in transformations of statistics.

In 1971, Schucany, Gray and Owen generalized the jackknife technique to handle more general
forms of bias.

Indiscriminate universal application of the jackknife can be hazardous.

This is illustrated in the case of interval estimation for a truncation point (Miller, 1964).

This paper investigates the effectiveness of the jackknife as tools for bias reduction, when applied
to the density estimator, which is known to be asymptotically unbiased estimator.

2. Kernel-type density estimator and iz jackknife

Let Xy, X,, ..., X, be i.i.d. random variables with continuous density function f(z) and f,(z;X,,
.., X,) be an estimator of f(z). _

To be meaningful, it is assumed that f,(z;X,, ..., X,) is nonnegative and jointly Borel measurable
in (:X,,..., X,).

It can be shown that such an f,(z;X,, ..., X,) is not an unbiased estimator (Rosenblatt, 1956),
and hence a natural candidate for jackknifing.

An obvious estimate of f(z) is the difference quotient,

Pz = #sample points in (x—b,z+5) _ Fulz+b)—Fu(z—b)
" 2nb 2b

where F,(+) is the sample c.d.f. of X),..., X, and & is a positive constant.

Then, using Taylor expansion of F(z),

E/ (z)]=%EF(x+b)—F(x—b)]=f(x)+£ﬁ)—bz+0(b“)

Var[f,.(z)]= n 64 (F(z+b) —F(z—b)+ {F(z+b)—F(z—b);%)
and MSE(f» (2))=Var(f,(z)] + Bias*( f.(z)) = f2 (xb) f "é? P gy ( L +,,4)

Thus f.(zx) is a biased estimator with bias;

Bias [f,,(x)]=f_"6£’) 240



The f,.(z) is asymptotically unbiaséd in the sense that the bias approaches to 0, provided that
5—( as n—oo,

Moreover, f,(z) is consistent estimator provided that mb—oco as n—co,

One criteria for choosing the constant & is to choose b so as to minimize the mean squared error
of f.(2).

The optimal choice of 4 is then
19 ACONRE e
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and the bias of f,(z) with & is
. _f'@ 9 VCONIRE P 2
Bxas[f,.(x)]—__s__ T +0(8*)
Now we investigate whether the jackknife would reduce the bias or not.
Let fi_,(z) denote the same type estimate of f(z) obtained by deleting the i-th member in the
sample (Xj,...,X,) and estimating f(z) based on the remaining (n—1) observations; i.e.,
.. Foy(z+8)~F, ()
faa ()=~ 957
where Fi_ () is the sample c.d.f. of Xi,..., Xi.y, Xiv1y oo, Xoe
Form the new estimates, called “pseudo-values” by Tukey;
Ji(fu(@))=nfu(z) = (a—1)Fi_\(2).
The jackknife estimate J(f.(z)) of f() is the average of the pseudovalues, J;(f.(x)); i.e.,

J(f (@) =2 (Fl@)) =nfu(2) = (3= Firs @)

h IR R .
where fir@=75 fi @,

The jackknife exactly eliminates a 7! bias term, and thus Quenouille conceived the jackknife to
achieve this reduction-in bias.

By analogous derivation as in f,(z) we obtain

EU(fa(@))=n Efs@))~ (=15 LES4i (2))

=f(z)+ %ﬂ_ (B2 — (n—1)B'7] - veeree
+ _(—2-;—}(-51))—!-[”1’2*— (n—1)4'2) + 0 (b12+D 4 p/12kt2))

provided that f(z) is 2% times differentiable.
Therefore, the ratios of bias compared with f,(z) are

_ Bisst (@ _, (V"
R =2 S == -0

7o\ 2% / o\ 2k
=<-%-> —n [ (%—) -1 } >1, since n>1.
This means that the jackknife increases the bias compared with the original estimator.

3. Monte Carlo study



A random sample of size 300 has been generated from the bimodal mixture;

s e L[ (x+1.5)% _3 _(z—=1.5)%
fle=0.15—7 »xp{ : ]+0,25 vir exp[ 275 ]

Compute f.(z) and J(f,(x)) at points z=—5.0 (0.2)+5. 0, for b=1.0 and 0.4 respectively,
¥=/n/(r—1) and plot f(x) by “¥", f.(z) by “0” and J(f.(z)) by “J” respectively.
The results show that the jackknife over-estimates than the original estimator and increases mean

squared ~rrors.
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