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A Note on &-Zero Regular Spaces

By Sung Mo Im

In this paper, we in‘roduce the concept of &-continuity using the &-zero set, and generalize the
characterization of the &-regularness using the &-continuity. From these results, we will show that the
&-product space of &-zero regular spaces is £-zero regular and &-zero regular space has the hereditary

property. Also, we will show that €-zero regularization is reflective.

Definition 1. Let &= (E;: iel} be a family of topological spaces. A subset Z of X is said to be
a &-zero set if Z={yeX : fi(x)=Ffi(y) for zeX} for some continuous map f; ! X—Ee€,

Definition 2. A map f: X—Y is said to be &-comtinuous at a point =z of X if for every &-zero
set nbd V of f(z), there exists a &-zero set nbd U of z such that f(U)CV. A map f:X-Y is

£&-cortinuous on X if it is &-continuous at every point of X.

Theorem 1. If a map f: X—Y is continuous at zeX, then f is &-continuous at z.

Proof. Sinse f is continuous at zeX, it is sufficient to show that for any e-zero set Vin ¥
containg f(z), f1(V) is &-zero set in X. Since V is &-zero set in Y, there exists u; ; Y-E; for
some 7el such thet #;~1(%;(f(2)))=V. On the while, fU(V)=,"(;" (t5;(f(x)))=(wicof)(w;of)
(). Thus f1(V) is &-zero set in X.

Corollary 2. Identity map 1y . X—X is E-continuous.

Theorem 3. If a map f: X—Y is E-continuous at xeX, and a map g . Y—Z is &-continuous at

f(x), then gof : X—Z is &-continuous at x.

Proof. Let W be a &-zero set nbd of g(f(z)). Then, since g is &-continuous at f(x), there
exists &-zero set nbd V of f(z) such that g(V)CW. On the other hand, since f is continuous at
z, there exists &-zero set nbd U of z such that f(U)CV. Thus g(f(U))CW, ie. (gof)(U)CW.

Hence gof is &-continuous.
Remark. By the above theorems, the class of topological spaces and &-continuous maps form a

category.
Definition 3. Let X be a topological space and (X,)qesa be a family of topological spaces. A

source (fa ' X—Xa)aea is called &-initial if it satisfies the following;

1) Each map f, is &-continuous.
2) For any topological space Y and a map £ : Y—X, 2 is £-continuous if and only if for each

aed, fioh ! Y—-X; is e-continuous.

Theorem 4. &) If (f: X>Xo)aer and (8p . X—Xp) gen are sources of &-continuous maps, (fo)acaQ
(g'p)pgs, and (fa),,;,q is e-initial, then (gp)pcg is E-initial.



b If (fo:XoXo)aen is e-initial and (gia : Xo— Yia) 2aeha 15 &-initial for all aed, then (giuofs:
X Y3a) ¢4, 2aera i85 §-initial.

¢) Let (fo: X—Xy)aen be a source of &-continuous maps, and for each aecA, (81, Xa— Yia) iaera e
a source of &-continuous maps. Then, if (Baofz: X—Yia)aeh, daena 18 &-initial, then (fo ' X—Xo)aer
is &-initial.

Proof. a) Let #: Y—X be a map such that hogs is &-continuous for all SeB. Then, since
(fa)aeaC (8p) geB, fuoh is E-continuous for all ,.A. Since (fu)qea is €-initial, & is &-continuous.

b) Let £ : Y—X be a map such that gof.ch is &-continuous for all aeA, 2.4, since(gaa) 1aeAn iS
§-initial, f.okh is &-continuous for all aed. Also, since (fy)aes is &-initial, & is &-continuous.

c) Let’s show that if (fxok)aea is &-continuous, then k is &-continuous. Since g (faoh) = (g1a0Fs) ok
is &-continuous, and (£1a°fa) wea, 2acha 1S E-initial, k is &-continuous. Hence (£140f ) aea, 2acra 18 &-initial.

Definition 4. A map f: XY is &-homeomorphism if f is bijective, f is &-continuous, and f!
is &-continuous. '

Definition 5. Let [X;:iel} be any family of topological spaces. The &-product topology 9, in
;’E]"X,- is the £-initial topology with respect to the source (Pr;: gX;—»X;).-g. We call (‘_IJX,-, Ty

&-product space.
Definition 6, A space X is &-zero regular if X is &-homeomorphic with a subspace of &-product
space ,1;7 E for some &/C¢.
€4/

Definition 7. A map f: X—Y is an &-embedding if f is injective and &-initial.

Theorem 5. A map f:X—Y is an &-embedding if and only if f:X-f(X)CY is an §-.
homeomor phism.

Proof. Since f: X—f(X) is bijective, there exists f~!: f(X)—X. On the while, since f is
&-initial and 1/ is e-continuous, f~! is &-continuous. Thus f is an &-homemorphism.

Conversely, let 2 : Z—X be a inap and foh :Z—Y be &-continuous. Since f:X-—-f(X) is an
E-homeomorphism, f-!: f(X)—X is &-continuous. Hence flo(foh)=~ is &-continuous. Thus £ is
an &-embedding.

Theorem 6. a) (fu: X—Xo)aen is E-initial if and only if [\fa: X—IIX, is &-initial.

b) (fa:XoX)aes is &-initial mono source if and only if [1f«: X—MX, is &-embedding.

Proof. a) By b) and ¢) of Theorem 4, it is obvious.

b) Let £xy. Since (f.)aea is mono source, there exists aeA such that f.(x)=xf.(y). Thus

(Nfa) (@) % (Nfa) (3). Hence N f. is an &-embedding.
Conversely, let []f. be a mono source. Then for z# ¥ in X, ([1fe) (@) # ([1f2) (5). Hence there

exists ael such that f,(z)*fa(¥). Thus (fy: X—X,)sa is a mono source.

Theorem 7. The following statements are equivalent;

a) A space X is &-zero regular.

b CX, 8 =é_] {f : X—E; e-continuous} is &-initial mono source.
€&

¢) There exists ?Cbu EX® such that F is &-initial mono source,
7]



Proef. a)=bc), Since X is §-zero regular, there exists an e-embedding f: X—IIE. If zy,

Eet’ce

then f(x)+f(y). Since f is &-embedding, f() %/(3) for each zxy in X. Hence there exists
projection Pr, such that Pryeg(z) %Prpof(y). ie. F=(Pryof)se’ is &-initial mono source.
2)=>h), Since fcéIYEX and F is £-initial mono soure, FCC(X,&). Hence C(X,£) is initial mono
€2

source.
b)=>e), 3ince C(X, &) is &-initial mono source,, cnx f is &-embedding by thecrem 6, b),
€C(X,8)

Theorem 8. Let (X, : acA] be a family of €-zero regular spaces. If (fu ! X—Xo)aea be E-initial
mono source, then X is &-zero regular.

Proof. Since for each acd, X, is &-rero regular, there exists \7",‘CEUE""l is &-initial mono source.
€2
Thus UA{g;ao fo i X0F, gicF,} is &-initial mono source. Hence X is &-zero regular,
[:12

Kemark., The class of &-zero regular spaces and e-continuous maps form & category which is
denoted by &-zero-Reg.

Corollary 9. §-zero-Reg is &-produtive and &-hereditary.

Remark. Let A be a category, and let ob(A)Dé&. Then §-zero-RegC A.

Lemma 10. Let X and Y be sets and let f: X—Y be a maps. Then kerf=|{(z,y)|f(z) =f(y)}

is an equivalence relation. Conversely, if R is an equivalence relation, and if q 1 X—X/Risa qQuotient
map, then ker g=R.

Lemma 11. Let X, Y and Z be sets. For a sarjective map f: X—Y and a surjective map g : X—
I there exists @ map h . Y—Z such that hof=g if and only if kerfCkerg.
e

Theorem 12. Suppose that X——Y commutes and e,m,f, and g are &-continuous.
1&g

—
m

If e is onto and m is &-embedding, then there exists a unique &-continuous map h 1 Y—2Z with hoe=f
and moh=g.

Proof. Let’s show that ker eCker f. Let (z,z")ker e, we have m(f(z))=m(f(z’)). Siace m
is injective, it follows that f(z)=f(z"), i.e. (z,z')kerf. Consequently, there exists 4 : Y—Z
with hoe =f. Since mohoe=mof, mof=goe, and e is onto, moh=g.

Finally, it remains to show that % is €-continuous. Since moh=g, g is &-continuous and m is
&-initial, A is &€-continuous.

Theorem 13. Let X be a topological space and let ex : X-—eX be an E-zero regularizaiion. For
every &-zero regular space Y, and every map f&C(X,§), there exists a unique §-continuous map f .
eX—Y such that f=f-cx

Proof. Let R=[{ker f: f=C(X,€)}. Then R is an equivalence relation. Lzt g: ¥—X/® “= ;
quotient space. Since for each map f=€(X, &) R==ker 3Cker f, there exists a unique map f : X/R—»
£ ‘or some Z=¢ such that Ffog=f.

Let ¢X te the space X/R endowed with the &-initial topology with respectf‘:g?x )U (f:X/P-3-1

?
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and let ex=¢ : X—>¢X. Then since U {f : X/R—Eet} is &-initial, and f is £-continuous, ex ; X—

1eCTX,8)
&X is &-continuous.

Let’s show that eX<¢&-zero-Reg. It is enough to show that |J {F:X/R—E<¢} is a mono
- )

reCix,e

source. Suppose [z]%(y] in eX=X/R. Then (z,y)&R= {kerf|f=C(X,e)}. Hence there exists
a map f,=C(X, &) such that (z, y)GEkerf,. ie. fo(z) = ().
Thus 7,({x))=F.(ex (@) =Ff,(x) 5. () =F.((¥]). HencefECL(jl{ Y {f :eX—Ec=e} is &-initial mono

source. This show that eX& &-zero-Reg.

Since Y&¢&-zero-Reg, C(Y, &) is &-initial mono source. For any u=C(Y, &), uofeC(X, £). Therefore
there exists a unique &-continuous map # : eX—E&¢ such that doey=ucf,

Let (z,z") =kerey, then ex(z)=ex(z’). Thus Geex(x) =ihosx(z’) for any u=C(Y,&), ie. uof(x)
=uof(z’) for all usC(X,&). Since C(Y,&) is mono source, f(z)=f(z’). Hence (z,z")kerf.

In all, ZerexCkerf. Since sx is onto, there exists a unique map fF :eX—Y such that foex=Ff.
Since for any ue=C(Y,€), uofoex=uof=iioex and ey is onto, uof=i is §-continuous for every u=C
(Y,8&). Since C(Y,€) is £-initial, f : eX—Y is &-continuous.
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