A Note on &-Zero Regular Spaces

By Sung Mo Im

In this paper, we introduce the concept of ξ -continuity using the ξ -zero set, and generalize the characterization of the ξ -regularness using the ξ -continuity. From these results, we will show that the ξ -product space of ξ -zero regular spaces is ξ -zero regular and ξ -zero regular space has the hereditary property. Also, we will show that ξ -zero regularization is reflective.

Definition 1. Let $\xi = \{E_i : i \in I\}$ be a family of topological spaces. A subset Z of X is said to be a ξ -zero set if $Z = \{y \in X : f_i(x) = f_i(y) \text{ for } x \in X\}$ for some continuous map $f_i : X \to E_i \in \xi$.

Definition 2. A map $f: X \rightarrow Y$ is said to be ξ -continuous at a point x of X if for every ξ -zero set nbd V of f(x), there exists a ξ -zero set nbd U of x such that $f(U) \subset V$. A map $f: X \rightarrow Y$ is ξ -continuous on X if it is ξ -continuous at every point of X.

Theorem 1. If a map $f: X \rightarrow Y$ is continuous at $x \in X$, then f is ξ -continuous at x.

Proof. Sinse f is continuous at $x \in X$, it is sufficient to show that for any ε -zero set V in Y contains f(x), $f^{-1}(V)$ is ε -zero set in X. Since V is ε -zero set in Y, there exists $u_i: Y \to E_i$ for some $i \in I$ such that $u_i^{-1}(u_i(f(x))) = V$. On the while, $f^{-1}(V) = f^{-1}(u_i^{-1}(u_i(f(x))) = (u_i \circ f)^{-1}(u_i \circ f)$ (x). Thus $f^{-1}(V)$ is ε -zero set in X.

Corollary 2. Identity map $1_X: X \rightarrow X$ is ξ -continuous.

Theorem 3. If a map $f: X \rightarrow Y$ is ξ -continuous at $x \in X$, and a map $g: Y \rightarrow Z$ is ξ -continuous at f(x), then $g \circ f: X \rightarrow Z$ is ξ -continuous at x.

Proof. Let W be a ξ -zero set nbd of g(f(x)). Then, since g is ξ -continuous at f(x), there exists ξ -zero set nbd V of f(x) such that $g(V) \subset W$. On the other hand, since f is continuous at x, there exists ξ -zero set nbd U of x such that $f(U) \subset V$. Thus $g(f(U)) \subset W$, i.e. $(g \circ f)(U) \subset W$. Hence $g \circ f$ is ξ -continuous.

Remark. By the above theorems, the class of topological spaces and \(\xi\)-continuous maps form a category.

Definition 3. Let X be a topological space and $(X_{\alpha})_{\alpha \in A}$ be a family of topological spaces. A source $(f_{\alpha}: X \to X_{\alpha})_{\alpha \in A}$ is called \mathcal{E} -initial if it satisfies the following;

- 1) Each map f_{α} is ξ -continuous.
- 2) For any topological space Y and a map $h: Y \rightarrow X$, h is ξ -continuous if and only if for each $\alpha \in A$, $f_{\alpha} \circ h: Y \rightarrow X_i$ is ε -continuous.

Theorem 4. a) If $(f: X \to X_{\alpha})_{\alpha \in A}$ and $(g_{\beta}: X \to X_{\beta})_{\beta \in B}$ are sources of ξ -continuous maps, $(f_{\alpha})_{\alpha \in A} \subset (g_{\beta})_{\beta \in B}$, and $(f_{\alpha})_{\alpha \in A}$ is ε -initial, then $(g_{\beta})_{\beta \in B}$ is ξ -initial.

- b) If $(f_{\alpha}: X \to X_{\alpha})_{\alpha \in A}$ is ε -initial and $(g_{\lambda \alpha}: X_{\alpha} \to Y_{\lambda \alpha})_{\lambda \alpha \in \Lambda \alpha}$ is ξ -initial for all $\alpha \in A$, then $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$, $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\lambda \in A}$
- c) Let $(f_{\alpha}: X \to X_{\alpha})_{\alpha \in A}$ be a source of ξ -continuous maps, and for each $\alpha \in A$, $(g_{\lambda \alpha}: X_{\alpha} \to Y_{\lambda \alpha})_{\lambda \alpha \in A}$ be a source of ξ -continuous maps. Then, if $(g_{\lambda \alpha} \circ f_{\alpha}: X \to Y_{\lambda \alpha})_{\alpha \in A}$, $\chi_{\alpha \in A}$ is ξ -initial, then $(f_{\alpha}: X \to X_{\alpha})_{\alpha \in A}$ is ξ -initial.
- **Proof.** a) Let $h: Y \to X$ be a map such that $h \circ g_{\beta}$ is ξ -continuous for all $\beta \in B$. Then, since $(f_{\alpha})_{\alpha \in A} \subset (g_{\beta})_{\beta \in B}$, $f_{\alpha} \circ h$ is ξ -continuous for all $\alpha \in A$. Since $(f_{\alpha})_{\alpha \in A}$ is ξ -initial, h is ξ -continuous.
- b) Let $h: Y \to X$ be a map such that $g_{\lambda\alpha} \circ f_{\alpha} \circ h$ is ξ -continuous for all $\alpha \in A$, $\lambda_{\alpha} \in A_{\alpha}$ since $(g_{\Lambda\alpha})_{\lambda\alpha \in \Lambda\alpha}$ is ξ -initial, $f_{\alpha} \circ h$ is ξ -continuous for all $\alpha \in A$. Also, since $(f_{\alpha})_{\alpha \in A}$ is ξ -initial, h is ξ -continuous.
- c) Let's show that if $(f_{\alpha} \circ h)_{\alpha \in A}$ is ξ -continuous, then h is ξ -continuous. Since $g_{\lambda \alpha} \circ (f_{\alpha} \circ h) = (g_{\lambda \alpha} \circ f_{\alpha}) \circ h$ is ξ -continuous, and $(g_{\lambda \alpha} \circ f_{\alpha})_{\alpha \in A}, \lambda_{\alpha \in A}$ is ξ -initial, h is ξ -continuous. Hence $(g_{\lambda \alpha} \circ f_{\alpha})_{\alpha \in A}, \lambda_{\alpha \in A}$ is ξ -initial.

Definition 4. A map $f: X \rightarrow Y$ is ξ -homeomorphism if f is bijective, f is ξ -continuous, and f^{-1} is ξ -continuous.

Definition 5. Let $\{X_i : i \in I\}$ be any family of topological spaces. The \mathcal{E} -product topology \mathcal{F}_{e} in $\prod_{i \in I} X_i$ is the \mathcal{E} -initial topology with respect to the source $(Pr_i : \prod_{i \in I} X_i \to X_i)_{i \in I}$. We call $(\prod_{i \in I} X_i, \mathcal{F}_{e})_{i \in I}$ \mathcal{E} -product space.

Definition 6. A space X is ξ -zero regular if X is ξ -homeomorphic with a subspace of ξ -product space $\prod_{E=0}^{n} E$ for some $\xi' \subset \xi$.

Definition 7. A map $f: X \rightarrow Y$ is an ξ -embedding if f is injective and ξ -initial.

Theorem 5. A map $f: X \rightarrow Y$ is an ξ -embedding if and only if $f: X \rightarrow f(X) \subset Y$ is an ξ -homeomorphism.

Proof. Since $f: X \to f(X)$ is bijective, there exists $f^{-1}: f(X) \to X$. On the while, since f is ξ -initial and $1_{f(X)}$ is ε -continuous, f^{-1} is ξ -continuous. Thus f is an ξ -homemorphism.

Conversely, let $h: Z \to X$ be a map and $f \circ h: Z \to Y$ be ξ -continuous. Since $f: X \to f(X)$ is an E-homeomorphism, $f^{-1}: f(X) \to X$ is ξ -continuous. Hence $f^{-1} \circ (f \circ h) = h$ is ξ -continuous. Thus f is an ξ -embedding.

Theorem 6. a) $(f_{\alpha}: X \rightarrow X_{\alpha})_{\alpha \in A}$ is ξ -initial if and only if $\prod f_{\alpha}: X \rightarrow \prod X_{\alpha}$ is ξ -initial.

b) $(f_{\alpha}: X \rightarrow X_{\alpha})_{\alpha \in A}$ is ξ -initial mono source if and only if $\prod f_{\alpha}: X \rightarrow \Pi X_{\alpha}$ is ξ -embedding.

Proof. a) By b) and c) of Theorem 4, it is obvious.

b) Let $x \neq y$. Since $(f_{\alpha})_{\alpha \in A}$ is mono source, there exists $\alpha \in A$ such that $f_{\alpha}(x) \neq f_{\alpha}(y)$. Thus $(\prod f_{\alpha})(x) \neq (\prod f_{\alpha})(y)$. Hence $\prod f_{\alpha}$ is an ξ -embedding.

Conversely, let $\prod f_{\alpha}$ be a mono source. Then for $x \neq y$ in X, $(\prod f_{\alpha})(x) \neq (\prod f_{\alpha})(y)$. Hence there exists $\alpha \in I$ such that $f_{\alpha}(x) \neq f_{\alpha}(y)$. Thus $(f_{\alpha} : X \rightarrow X_{\alpha})_{\alpha \in A}$ is a mono source.

Theorem 7. The following statements are equivalent;

- a) A space X is ξ-zero regular.
- b) $C(X,\xi) = \bigcup_{E \in \ell} \{f : X \to E; \epsilon \text{-continuous}\}\$ is $\xi \text{-initial mono source.}$
- c) There exists $\mathcal{F} \subset \bigcup_{E \in \mathcal{E}} E^{X\alpha}$ such that \mathcal{F} is ξ -initial mono source,

Proof. a) \Rightarrow c). Since X is ξ -zero regular, there exists an ε -embedding $f: X \to \Pi E$. If $x \neq y$, then $f(x) \neq f(y)$. Since f is ξ -embedding, $f(x) \neq f(y)$ for each $x \neq y$ in X. Hence there exists projection Pr_E such that $Pr_E \circ g(x) \neq Pr_E \circ f(y)$. i.e. $\mathcal{F} = (Pr_E \circ f)_{E \in Y}$ is ξ -initial mono source.

e) \Rightarrow b). Since $\mathcal{F}\subset \prod_{E\in\mathcal{E}}X$ and \mathcal{F} is ξ -initial mono soure, $\mathcal{F}\subset C(X,\xi)$. Hence $C(X,\xi)$ is initial mono source.

b) $\Rightarrow \varepsilon$). Since $C(X, \varepsilon)$ is ε -initial mono source, $\bigcap_{f \in C(X, \varepsilon)} f$ is ε -embedding by theorem 6, b).

Theorem 8. Let $\{X_{\alpha}: \alpha \in A\}$ be a family of ξ -zero regular spaces. If $(f_{\alpha}: X \rightarrow X_{\alpha})_{\alpha \in A}$ be ξ -instial mono source, then X is ξ -zero regular.

Proof. Since for each $\alpha \in A$, X_{α} is ξ -rero regular, there exists $\mathcal{F}_{\alpha} \subset \bigcup_{E \in \epsilon} E^{X_{\alpha}}$ is ξ -initial mono source. Thus $\bigcup_{\alpha \in A} \{g_{\lambda \alpha} \circ f_{\alpha} : X \to E, g_{\lambda \alpha} \in \mathcal{F}_{\alpha}\}$ is ξ -initial mono source. Hence X is ξ -zero regular.

Remark. The class of ξ -zero regular spaces and ε -continuous maps form ε category which is denoted by ξ -zero-Reg.

Corollary 9. &-zero-Reg is &-produtive and &-hereditary.

Remark. Let A be a category, and let $ob(A) \supset \xi$. Then ξ -zero-Reg $\subset A$.

Lemma 10. Let X and Y be sets and let $f: X \rightarrow Y$ be a maps. Then $kerf = \{(x, y) | f(x) = f(y)\}$ is an equivalence relation. Conversely, if R is an equivalence relation, and if $q: X \rightarrow X/R$ is a quotient map, then ker q = R.

Lemma 11. Let X, Y and Z be sets. For a surjective map $f: X \rightarrow Y$ and a surjective map $g: X \rightarrow Y$ there exists a map $h: Y \rightarrow Z$ such that $h \circ f = g$ if and only if $kerf \subset kerg$.

Theorem 12. Suppose that $X \xrightarrow{e} Y$ commutes and e,m,f, and g are ξ -continuous. $f \downarrow \qquad \qquad \downarrow g \\
Z \xrightarrow{m} P$

If e is onto and m is ξ -embedding, then there exists a unique ξ -continuous map $h: Y \rightarrow Z$ with $h \circ e = f$ and $m \circ h = g$.

Proof. Let's show that $\ker e \subset \ker f$. Let $(x, x') \in \ker e$, we have m(f(x)) = m(f(x')). Since m is injective, it follows that f(x) = f(x'), i.e. $(x, x') \in \ker f$. Consequently, there exists $h: Y \to Z$ with $h \circ e = f$. Since $m \circ h \circ e = m \circ f$, $m \circ f = g \circ e$, and e is onto, $m \circ h = g$.

Finally, it remains to show that h is ξ -continuous. Since $m \circ h = g$, g is ξ -continuous and m is ξ -initial, h is ξ -continuous.

Theorem 13. Let X be a topological space and let $\varepsilon_X : X \to \varepsilon X$ be an ε -zero regularization. For every ε -zero regular space Y, and every map $f \in C(X, \varepsilon)$, there exists a unique ε -continuous map $\bar{f} : \varepsilon X \to Y$ such that $f = \bar{f} \cdot \varepsilon_X$

Proof. Let $R = \bigcap \{\ker f : f \in C(X, \xi)\}$. Then R is an equivalence relation. Let $q : X \to X/R$ be a quotient space. Since for each map $f \in C(X, \xi)$ $R = \ker q \subset \ker f$, there exists a unique map $f : X/R \to \mathbb{Z}$ for some $E \in \xi$ such that $f \circ g = f$.

Let ϵX be the space X/R endowed with the ξ -initial topology with respect to $\bigcup_{f \in C(X, \epsilon)} \{f : X/P - iX < \xi\}$

and let $\varepsilon_X = q : X \to \varepsilon X$. Then since $\bigcup_{f \in C(X, \varepsilon)} \{f : X/R \to E \varepsilon \xi\}$ is ξ -initial, and f is ξ -continuous, $\varepsilon_X : X \to \varepsilon X$ is ξ -continuous.

Let's show that $\epsilon X \in \underline{\epsilon}$ -zero-Reg. It is enough to show that $\bigcup_{f \in C(X, \epsilon)} \{f : X/R \to E \in \underline{\epsilon}\}$ is a mono source. Suppose $\{x\} \neq \{y\}$ in $\epsilon X = X/R$. Then $(x, y) \notin R = \bigcap \{kerf | f \in C(X, \epsilon)\}$. Hence there exists a map $f_o \in C(X, \epsilon)$ such that $(x, y) \notin kerf_o$. i.e. $f_o(x) \neq f_o(y)$.

Thus $\bar{f}_o([x]) = \bar{f}_o(s_X(x)) = f_o(x) + f_o(y) = \bar{f}_o([y])$. Hence $\bigcup_{f \in C(X, e)} \{\bar{f} : sX \to E \in s\}$ is ξ -initial mono source. This show that $sX \in \xi$ -zero-Reg.

Since $Y \in \underline{\xi\text{-}xero\text{-}Reg}$, $C(Y, \xi)$ is ξ -initial mono source. For any $u \in C(Y, \xi)$, $u \circ f \in C(X, \xi)$. Therefore there exists a unique ξ -continuous map $\bar{u} : \varepsilon X \to E \in \xi$ such that $\bar{u} \circ \varepsilon_X = u \circ f$.

Let $(x, x') \in ker \varepsilon_X$, then $\varepsilon_X(x) = \varepsilon_X(x')$. Thus $\bar{u} \circ \varepsilon_X(x) = \bar{u} \circ \varepsilon_X(x')$ for any $u \in C(Y, \xi)$, i.e. $u \circ f(x) = u \circ f(x')$ for all $u \in C(X, \xi)$. Since $C(Y, \xi)$ is mono source, f(x) = f(x'). Hence $(x, x') \in ker f$.

In all, $ker\varepsilon_X \subset kerf$. Since ε_X is onto, there exists a unique map $f: \varepsilon X \to Y$ such that $f \circ \varepsilon_X = f$. Since for any $u \in C(Y, \xi)$, $u \circ f \circ \varepsilon_X = u \circ f = \bar{u} \circ \varepsilon_X$ and ε_X is onto, $u \circ \bar{f} = \bar{u}$ is ξ -continuous for every $u \in C(Y, \xi)$. Since $C(Y, \xi)$ is ξ -initial, $\bar{f}: \varepsilon X \to Y$ is ξ -continuous.

References

- 1. Gillman and Jerison, Rings of Continuous Functions, D. Van Nostrand Company, Inc. Princeton.
- 2. Horst Herrlich, Categorical Topology 1971~1981. Bremen, 1981.