Some Results on Right Bipotent and RS-Near Rings

By Young Bae Jun Gyeongsang National University, Jinju, Korea

1. Introduction

A near-ring $(N, +, \cdot)$ is a set N, together with two binary operations, addition and multiplication, such that (N, +) is a group (not necessary abelian), (N, \cdot) is a semigroup, \cdot is left distributive over +: x(y+z) = xy + xz for each x, y, z in N, and $x \cdot 0 = 0 \cdot x = 0$ for every x in N. A near ring N is said to be right bipotent if $aN = a^2N$ for every a in N(2). A near ring N is called irreducible if it contains only the trivial right N-subgroup (0) and N itself.

In this paper we investigate some results of right bipotent and RS-Near rings. In particular, Oswald said in (4) that if T is an N-subgroup of N, r(T) is an ideal of N. But we prove the following theorem: Let N be a near ring with no nonzero nilpotent element and let T be any non-empty subset of N. Then r(T) is an ideal.

2. Preliminaries

Lemma 2.1. ([2]) A right bipotent RS-near ring contains no nonzero nilpotent elements.

Lemma 2.2. ([3]) If N is a near ring and x is a right distributive element, then (-w)x = -(wx) = w(-x) for each $w \in \mathbb{N}$.

Since every regular near ring is an RS-near ring, Theorem 3.12 of Jun ((2)) gives immediately: Lemma 2.3. A right bipotent near ring N is regular if and only if N is an RS-near ring.

3. Results

Theorem 3.1. A right bipotent near ring is an RS-near ring if and only if it has no nonzero nilpotent elements.

Proof. (\Rightarrow) Clear

(\Leftarrow) Let N be a right bipotent with no nonzero nilpotent elements. If $x \in N$, then $xN = x^2N$ so $x^2 = x^2y$ for some y in N. Then $(x-xy)^2 = (x-xy)(x-xy) = (x-xy)x - (x-xy)xy = 0$. Hence x-xy=0 and so $x=xy \in xN$.

The near rings N_1 and N_2 in Examples 3.2 of Jun((2)) show that a right bipotent near rings with nilpotent elements need not be an RS-near ring.

Theorem 3.1, with Lemma 2.3, gives immediately:

Corollary 3.2. A right bipotent near ring is regular iff it has no nonzero nilpotent elements.

Theorem 3.3. A right bipotent near ring with no zero divisors is irreducible.

Proof. Let N be a right bipotent near ring and let A be a nonzero right N-subgroup of N.

Take any nonzero element a in A, then $aN=a^2N$. If $r \in N$ then $ar=a^2t$ for some $t \in N$. Therefore a(r-at)=0 and $r=at \in A$ and so A=N.

Definition 3.4. ((4)) A stbset A of N is called a right ideal if A^+ is a normal subgroup of N^+ with the condition $(r_1+a)r_2-r_1r_2 \in A$ for each a in A, r_1, r_2 in N.

Clearly right ideals of N are N-subgroups of N. If A is a right ideal of N and if, in addition, $a \in A$, $r \in N$ together imply $ra \in A$, we say that A is an ideal of N.

If $t \in N$, we define r(t), the right annihilator of t, by $r(t) = \{x \in N : rx = 0\}$. There is a similar definition for l(t), the left annihilator of t. If T is a subset of N, we define $r(T) = \bigcap_{t \in T} r(t)$ and similarly define l(T). It is clear that r(T) is a right ideal of N and that l(T) is closed under multiplication on the left by elements of N. If T is an N-subgroup of N, r(T) is an ideal of N and is called an annihilator ideal of N ([4]).

Theorem 3.5. Let N be a near ring with no nonzero nilpotent element and let T be any non-empty subset of N. Then r(T) is an ideal.

Proof. It is sufficient to show that $Nr(T) \subset r(T)$. Take $x \in r(T)$ and $t \in T$. Then tx = 0. Therefore $(xt)^2 = x(tx)t = 0$ and so xt = 0. For any element r in N, $(t(rx))^2 = t(rx)t(rx) = tr(xt)rx = 0$ so t(rx) = 0. Thus $rx \in r(t)$ for all $r \in N$. Hence $rx \in \bigcap_{t \in T} r(t) = r(T)$. Therefore $Nr(T) \subset r(T)$.

Corollary 3. 6.. In a right bipotent RS-near ring, right annihilators are ideals.

References

- [1] J.L. Jat and S.C. Choudhary, On left bipotent near rings, Proc. Edinburgh Math. Soc., 22 (1979), 99-107.
- [2] Y.B. Jun, On structures of right bipotent and RS-near rings, (M.S. dissertation, Gyeongsang National University, 1981).
- [3] S. Ligh, On the commutativity of near rings, Kyungpook Math. J., 10(1970), 105-106.
- [4] A. Oswald, Near rings in which every N-subgroup is principle, Proc. London Math. Soc., 28 (1974), 67-88.