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A Study on Linear Operations on Stationary Process*

By Kim, Byung-Il
Cheong Ju University, Cheong Ju, Korea

This paper deals with some properties of the Gaussian stationary processes and the spectral re-
presentation.

Our results are motivated by J. Yeh [4). Unless otherwise stated in this paper most of termino-
logies and notations come from (1] and [2].

A Gaussian random process §(t)=£&(w, ) with values in a probability space £, where the para-
meter ¢ takes integer (discrete) or real values(—oco<t< o), is said to be stationary if its mean is
constant

a(t)=ME(t)=a
and the correlation function B(s,t) depends on the difference (s—#) only:
B(s, ) =M(£(s) —al(§(¢) —a)=B(s—). €))
The function B(#) in (1) is said to be a correlation function of the stationary process £(¢); it can
be expressed as

B(t)= [e*Fan, @
‘wnere F(d2) is celled the speciral measure of the stationary process £(¢). In (2) the integration is
over —a<A<x in the case of discrete time ¢ and over —oo<{i<{o0 in the case of continuous time £,

The stationary process £(f) permits a spectral representation of the form

t®= | o, ®

where @(d2) is called the stochastic spectral measure such that
Mw(dl)b?_d;:F(dl N4dy).

Each variable 7 from the closed linear hull H(T) of the values &(¢), tT, permits a spectral
representaion of the form

=[omown, @
where (1) is the function from the space Lr(F), the real linear hull of the functions ¢'* of 2,
t&T, closed with respect to the scalar product
i p>r= [ p1(D P DFED. (®)
The stochastic integral given by (4) is defined for any function ¢=Ly(F) and yields y=H(T).
The correspondencel 7 () is a unitary isomorphism of the Hilbert spaces H(1") and Lr(#):
<1, 920 =41, PoOF- 6
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In the case where the parameter ¢ is continuous and the set T is a finite interval, we can define
the space Lr(F) as the closure of the subspace LO of all functions of the form

o= eruar @
where the u=u(t) are infinitely differentiable functions vanishing outside of the interval T. Since
the functions ¢(2) decrease faster than |1|™* as 2—oo, the scalar product (5) can be defined on
the subspace L° with the help of finite spectral measure as well as any o-finite measure G(dd)
satisfying the condition

[ a+mGan<e

for some integer n.
Let us set

1 o6= | L DRDC@D ®)

and define the complete Hilbert space Lr(G) to be closure of all functions of the form (7) by the
scalar product given by (8). Let Ly(G) be a Hilbert space of the type indicated. (4) prescribes the
random functional »=7(¢) defined on the everywhere dense subspace of functions Ly (G) NLr(F).

Suppose 7=7(gp) is a random element from the conjugate space of Lr(G), i.e.,

7(p)=<p, M, 9
where 7=75(2) is a Gaussian function with trajectories in the Hilbert space Lr(G). The correlation
operator B can then be found from the relations
{Be1, p206=Mn(9))7(p2) =1, P> r={A¢:, Apr=(A*Ap,, o),

where A is the operator on the Hilbert space Lr(G) into the Hilbert space Lr(F) determined by
the equality .
Ap(H)=¢() and p=Lr(G)NLr(F), (10)
where A¥* is its adjoint on Ly (F) into Ly (G).

B will be a nuclear operator like any correlation operator. We note that for the finite measure
G(d2), (9) is equivalent to a spectral representation of the initial stationary process £(t), t=T:

g(t) = ] ety ()G (D), teT. (1D

In fact, the functions ¢ () =e'¥ are complete in the Hilbert space Ly(G) and, from (11), p(e*)=
&M, pdg, t=T, extends to the whole space Lr(G), the closed linear hull of functions of the type
(X)) =¢e'*,

Theorem 1. A random process §(t), t=T, is a random element of a Hilbert space X if and only
if the product B=A*A is a nuclear on a Hilbert space Ly (G) where the operator A is defined by(10).

Let £&=£(t) be a Gaussian random function of the parameter ¢t=T with values £§(¢)=£(w,t),
w={2, on a probability space (£2,%,P). We assume that the o-algebra % is generated by £(f)=
£(w,t) on R as the parameter ¢ runs through the set T'; in particular, then, the probability measur
P on the o-algebra #=1U; is Gaussian.

Let P, be another Gaussian measure on the o-algebra %, It is said to be absolutely continuou
with respect to P if P;(A)=0 for P(A)=0, A<l. It is known that the absolutely continuou
measure P, is representable as



Pi(4)=| p()P(dw), A=, (12)
where p(w) is nonnegative definite function on £ called a density and designated p(w)=P,;(dw)/
P(dw), Measures P, and P are said to be equivalent if they are mutually absolutely continuous.

The measures P, and P are said to be orthogonal if there exist nonover-lapping sets A and A, =¥
for which

P(A)=1, P(A)=0,

and

PI(A) =—'0, P;(A;):l. (13)
The absolute continuity implies in this case that for any ¢>0 there is §>>0 such that

P, (A)<e for P(A)KS8 )]
for all A=te,

We consider now the Gaussian measures P and P, with identical means equal to zero.
Let us define the operator A on the Hilbert space Lr(F) into the Hilbert space Lr(F;) by
Ap(D)=pd) | (15)
for all p(2)L$. This condition is equivalent to the fact that the operator A is bounded and has
2 bounded inverse. This can be expressed as
A*AZ*E, (16)
where A* is the adjoint operator of 4, and E is the identity operator; (16) implies that
| (A*A)pllrXlplr, p=Lr(F).

Note that
(A*Ap, Pdr={A¢, A{>r,={p, PO an
for any ¢, ¢,
We consider the difference
Ad=E—A*A, ' (18)

Lemma 1. If the operator 4 is completely continuous, (16) as well as |ple=lelr, =Ly will
be satisfied if and only if the operator A has no cigenvalue equal to one.

Proof. It is obvious that the condition given by (16) is equivalent to the fact that the operator
A*4 is bounded and has a bounded inverse (A*A)~!. Further, since the operator A*A is positive,
the difference 4=E— A¥A is such that

6= sup (dp, p><1.
ltells=1
We have
{p, por—(A*Ap, p>r<8p, P
and
C(A*Ap, pye> (1—8)<p, P)F.

Therefore, the bounded operator (A*A)~! exists for 1. On the other hand, if 1 is the eigenvalue
of the operator £—A*A, 0 will be the eigenvalue of the operator A*A, and therefore the inverse
operator (A*A)~! does not exist.

Theorem 2. Under the condition given by |plr<|l¢llr, the Gaussian measures P and P, are

* The relationship a8 for variables a« and 8 implies that 0<{e;<<a/f<Sea<{oe for some constant ¢; and c,.



équivalent if and only if d=E—~ A*A is Hilberi-Schmidi.
Proof. Let us consider the spectral representation of the bounded symmetric operator 4:
4= uE@p),
where E(dy) is the spectral family of projection operators (unitary decomposition). It is seen that
A*A= j (1- ) E(dy).
We assume that the spectrum of the operator 4 is not purely discrete. Then outside of a neighbor-
hood (—¢,¢) there is an infinite number of spectral points, and therefore an infinite number of

nonoverlapping intervals (u, puey), k=1, 2, -+, such that all invariant orthogonal subspaces of the
form

E[p;,, Ilk+1] Ly (F)
are different from zero. Let us choose an element ¢, |¢,)r=1, from each subspace mentioned above
for which
2 for j=k
(A*A(Pk, ¢j>F=<¢’fa %‘)F.: { 00" fg: :;‘i k,
and

#h_<_l;0»2$llk+1, (1—a)2=é.
The entropy distance .7, between the Gaussian measures P and P, on the o-algebra %, generated
by the variables 9s=75(¢;), k=1,, = is such that

S (1= 02>,
k=1

It is seen that r,—»c0.as n—co, Gaussian measures P and P, are orthogonal on the g-algebra #=lim &%,

prsen
Thus, the spectrum of the operator 4 is purely discrete for the equivalent measures P and P;. If ¢,
@z, e+, is a complete-orthonormal system of functions with eigenvalues g, g5, -+, the condition

;ﬂk2<°° (19
is equivalent to the fact that
lim 7,530 (1—04%)2<eo,
R-100 k=1
where 0,?=1—py,, k=1],2, ., is the complete system of eigenvalues of the operator A*A and r, is
the entropy distance between P and P, on the o-algebra %, generated by the variables 7,=7(¢s),
k=1,--,n. Therefore, (19) is necessary and sufficient condition for the Gaussian measures P and

P, to be equivalent, as was to be proved.
Let us note that (19) can be written as

’§<A¢k, ¢I>i‘<°°
and that for any orthonormal system ¢y, ¢y, &L (F)
?:};(4‘/’», ¢,~>%=Z.C}’;<A¢n, dDF) 2=§:M¢k IfF2=Zk§[ZjKA¢'», piE)
=};[Z»<¢"’ 4%)335.);"450;"%=§<4¢», k.

In the above relations the pertinent inequalities become equalities. It is readily seen that the
operator 4 is a Hilbert-Schmidt operator if and only if '



kZJ<A(,0k, piiploo (20)

tor any complete orthonormal system ¢y, ¢,,---. (20) can immediately be expressed in terms of
corelation functionals of the distributions P and P,, since

Ao, P> r=p, Py r—(A*Ap, $>r={p, $>r—<p, $>r,=B(p, ¢) — B, (¢, $)
for any ¢, =Ly (F). Therefore, under the condition given by |¢[==l¢lr a necessary and sufficient
condition for equivalence of the Gaussian measures P and P, is that for any complete orthonorma!l
system gy, 9, L1 (F)

kZ;b (s, p;)2< 0 @1
where b(% ¢) =B(¢’ (/)) —Bl (9), ¢): ¢, ¢ ELT(F)'

Let us consider actually the linear space L?,r of functions of the form
A, 1) =§chjei(ls‘-#‘i) (22)

{where 5;,, t;&T and where ¢;; are real coefficients). We define L7 r(FXF) as a Hilbert space

obtained by means of the closure of L};x over the scalar product

@, $rexe= o2, ) B F @A) F(dp) (23)
1t is obvious that if ¢, p’’eLr(F), then
PR, ) =0 " (D)o’ (1) 24)

snters into the space Lrr(FXF). In this case the system of functions of the type given by (24)
iz complete in Ly r(EXF).

oG, 1)~ ¢, 3e= [ 19 D7D — ¢ DI (W) 1*F@D Fdp)
<2[[Cle” W 1719/ D = ¢/ D 1+ 19 (D 1219 ()~ 9" () | VP (@D F(dp)

=2(le” 3¢’ — ¢ I3+ 1¢¥ | rll¢’— " 7]
for any functions ¢, ¢’” and ¢’, ¢’/ of the type mentioned above.
Letp;, @5, ---. be an orthonormal system in a Hilbert space Ly(F). Then, obviously, the functions
PoiA =N () kj=1,2,,
romprise a complete orthonormal system in the Hilbert space Ly (FXF). Under the condition
ziven by (20) let

bu i =blpnp),  kj=1,2,-,
and let ¢y(A, p) ELryr(FXF) be defined as

Do(2, i =kzjbkj¢kj A, (25)
(25) yields the decompdsition of ¢4(4, ) over the orthonormal systemg,;(2, ¢) so that

b(@s, 05) = Psj, Po) Fxcr.
This relation obviously extends to any linear combinations

o’ (D =§EC»’W D, o"(w =§c,-” e (),
s that

e

b(¢,, ‘D”) = <¢,F,) ¢0>F><F. (26)
Theorem 3. The Gaussian measuers P and P, (with zero mean values) are equivalent on the -
algebra W(T) if and only if the difference betwesn the correlation functions
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b(‘y t>=B<S’ t) —‘Bl(s, t)

is representable as

b(s,t)=[[e s (2, 1) F(d) Fy(dp) (27)
for s,teT, where the function (A, p) is such that

J[ 193, ) 12F @0 F(ad) Fy (@) <eo.
For the equivalent measures P and Py the integral equation given by (27) has a solution ¢(A, )=
Ly (FXFy)., The density p(w)=P,(do)/P(dw) of the equivalent measures can be expressed as

p@=D exp | 4 [[¢ w¥ @1, |, (28)

where ¢(2, p) is the solution of (27) from the space Lr.r(FXFy); D is a normalizing multiplier.

Proof. Since the functions ¢(4, g) =e'*#  s5t=T, form a complete system in the Hilbert space
Lo (FXF,)), the relation given by (27) is equivalent, for ¢ (A, g)ELrr(FxF;). If (27) holds
true for a function ¢(, ) in the Hilbert space of all square-integrable, the projection of ¢(2, z)
onto the subspace Ly, r(FXF,). Let us consider the densities p,(w)=P;(dw)/P{dw) on the s-alge-
bras %,, each of which is generated by variables », k=1, --'n.

log 2 (w) =Mlog p,—, T enlE(&(E) ~Blty, 1)), (29)

where {c:;} is the difference between the matrices inverse to the correlation matrices {B,(¢,¢;)} and
{B(t:, t;)}. The corresponding variables

74 (@) ——;z=: e (B)E@) — Bt 1))

appearing in (29) belong to the épace H,(T)and are representable

1= [[ 60 A ¥ (@3, dpo), o
where
It is easy to verify that each function ¢.(%, ) satisfies an equation of the type given by (27),
H e~iGsuteh (A, W) F(dR) Fy (dp) =b(s,£), 32

for s,t=t;,+--,t,. In fact, this equality can be rewritten in matrix form
{B(te, £5)} {ens) {Bi(te, )] = (b (s, £},
where
{ej} = {Bits, t)} 1~ (B, £) 7,
and it follows immediately that
{B(ts, t)} {eas} = {B(ts, )} {Bi(ts, 1)} ' —E,
{B(ts, t)} {ca;} (B1(tr, t)} = {B(ts, £)} — {B1(ts, )} = (b (84, 2,)}
We can rewrite (32) also as
P, P rxr=b(s,t), s,tET,,
where T,={t;, -, t,} and p(4, ) =¥ s te=T, It is clear that for m<a the function ¢.(4, &)
coincides with the projection of the element ¢,(2, g) ELg,xr,(FXF,) onto the subspace Lruyr,(FX
F)) so that



Ign—Pulltxr, = Pl Exp,— ||2¢nl|FxFl->0
as m,n—oo, since the sequence ||¢.li%rxr, 72=1,2,+--, turns out to be monotone decreasing and lim
[lall? exists.
It is also seen that since the Hilbert space Lryr(FX F;) coincides with the closure of extending
spaces Lrxr,(FXF), n=1,2,-, with each function ¢,(4, g)in (32) being the projection of ¢(2, 1)
eLr s (FxXF) by 27, }‘133 0.(%, w) L (FXF,) has the property that

¢, ) =lim ¢, 2, ).
This fact implies that the variables 7, of the type given by (30) appearing in (29) converges in
*he mean to the variable
7=[[¢ G, ¥ @, dpeH(T).
Therefore, the density p(w)=_P,(dw)/P(dw) on the g-algebra #(T) can be determined by the limit
relation given by
log p(w)=lim M log p.+lim{log #,—M log p.)

=lim M log #,—- lim 7,(@)
=lim M log o= 1imﬂ'¢,, @, ¥ (@2, dp)

~log D~ [[¢4, ¥ (d2,dp),
which yields (28).
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