A Study on Linear Operations on Stationary Process*

By Kim, Byung-Il Cheong Ju University, Cheong Ju, Korea

This paper deals with some properties of the Gaussian stationary processes and the spectral representation.

Our results are motivated by J. Yeh [4]. Unless otherwise stated in this paper most of terminologies and notations come from [1] and [2].

A Gaussian random process $\xi(t) = \xi(\omega, t)$ with values in a probability space Ω , where the parameter t takes integer (discrete) or real values $(-\infty < t < \infty)$, is said to be stationary if its mean is constant

$$a(t) = M\xi(t) \equiv a$$

and the correlation function B(s,t) depends on the difference (s-t) only:

$$B(s,t) = M(\xi(s) - a)(\xi(t) - a) = B(s - t).$$
 (1)

The function B(t) in (1) is said to be a correlation function of the stationary process $\xi(t)$; it can be expressed as

$$B(t) = \int e^{i\lambda t} F(d\lambda), \qquad (2)$$

where $F(d\lambda)$ is called the spectral measure of the stationary process $\xi(t)$. In (2) the integration is over $-\pi \leqslant \lambda \leqslant \pi$ in the case of discrete time t and over $-\infty < \lambda < \infty$ in the case of continuous time t. The stationary process $\xi(t)$ permits a spectral representation of the form

$$\xi(t) = \int e^{i\lambda t} \Phi(d\lambda), \tag{3}$$

where $\Phi(d\lambda)$ is called the stochastic spectral measure such that

$$M\Phi(\Delta_1)\overline{\Phi(\Delta_2)} = F(\Delta_1 \cap \Delta_2).$$

Each variable η from the closed linear hull H(T) of the values $\xi(t)$, $t \in T$, permits a spectral representation of the form

$$\eta = \int \varphi(\lambda) \Phi(d\lambda), \tag{4}$$

where $\varphi(\lambda)$ is the function from the space $L_T(F)$, the real linear hull of the functions $e^{i\lambda t}$ of λ , $t \in T$, closed with respect to the scalar product

$$\langle \varphi_1, \varphi_2 \rangle_F = \int \varphi_1(\lambda) \ \overline{\varphi_2(\lambda)} F(d\lambda).$$
 (5)

The stochastic integral given by (4) is defined for any function $\varphi \in L_T(F)$ and yields $\eta \in H(T)$. The correspondence $\eta \leftrightarrow \varphi(\lambda)$ is a unitary isomorphism of the Hilbert spaces H(T) and $L_T(F)$:

$$\langle \eta_1, \eta_2 \rangle = \langle \varphi_1, \varphi_2 \rangle_F. \tag{6}$$

^{*} 이 논문은 1981년도 문교부 학술 연구비 조성에 의하여 연구되었음,

In the case where the parameter t is continuous and the set T is a finite interval, we can define the space $L_T(F)$ as the closure of the subspace L^0 of all functions of the form

$$\varphi(\lambda) = \int_{-\pi} e^{i\lambda t} u(t) dt \tag{7}$$

where the u=u(t) are infinitely differentiable functions vanishing outside of the interval T. Since the functions $\varphi(\lambda)$ decrease faster than $|\lambda|^{-n}$ as $\lambda \to \infty$, the scalar product (5) can be defined on the subspace L^0 with the help of finite spectral measure as well as any σ -finite measure $G(d\lambda)$ satisfying the condition

$$\int (1+\lambda^2)^{-n}G(d\lambda) < \infty$$

for some integer n.

Let us set

$$\langle \varphi_1, \varphi_2 \rangle_G = \int \varphi_1(\lambda) \overline{\varphi_2(\lambda)} G(d\lambda) \tag{8}$$

and define the complete Hilbert space $L_T(G)$ to be closure of all functions of the form (7) by the scalar product given by (8). Let $L_T(G)$ be a Hilbert space of the type indicated. (4) prescribes the random functional $\eta = \eta(\varphi)$ defined on the everywhere dense subspace of functions $L_T(G) \cap L_T(F)$.

Suppose $\eta = \eta(\varphi)$ is a random element from the conjugate space of $L_T(G)$, i.e.,

$$\eta(\varphi) = \langle \varphi, \eta \rangle_{G}, \tag{9}$$

where $\eta = \eta(\lambda)$ is a Gaussian function with trajectories in the Hilbert space $L_T(G)$. The correlation operator B can then be found from the relations

$$\langle B\varphi_1, \varphi_2\rangle_G = M\eta(\varphi_1)\eta(\varphi_2) = \langle \varphi_1, \varphi_2\rangle_F = \langle A\varphi_1, A\varphi_2\rangle_F = \langle A^*A\varphi_1, \varphi_2\rangle_G,$$

where A is the operator on the Hilbert space $L_T(G)$ into the Hilbert space $L_T(F)$ determined by the equality

$$A\varphi(\lambda) = \varphi(\lambda) \text{ and } \varphi \in L_T(G) \cap L_T(F),$$
 (10)

where A^* is its adjoint on $L_T(F)$ into $L_T(G)$.

B will be a nuclear operator like any correlation operator. We note that for the finite measure $G(d\lambda)$, (9) is equivalent to a spectral representation of the initial stationary process $\xi(t)$, $t \in T$:

$$\xi(t) = \int e^{-i\lambda t} \eta(\lambda) G(d\lambda), \quad t \in T.$$
 (11)

In fact, the functions $\varphi(\lambda) = e^{i\lambda t}$ are complete in the Hilbert space $L_T(G)$ and, from (11), $\eta(e^{i\lambda t}) = \langle e^{i\lambda t}, \eta \rangle_G$, $t \in T$, extends to the whole space $L_T(G)$, the closed linear hull of functions of the type $\varphi(\lambda) = e^{i\lambda t}$.

Theorem 1. A random process $\xi(t)$, $t \in T$, is a random element of a Hilbert space X if and only if the product B = A * A is a nuclear on a Hilbert space $L_T(G)$ where the operator A is defined by (10).

Let $\xi = \xi(t)$ be a Gaussian random function of the parameter $t \in T$ with values $\xi(t) = \xi(\omega, t)$, $\omega \in \Omega$, on a probability space (Ω, \mathcal{U}, P) . We assume that the σ -algebra \mathcal{U} is generated by $\xi(t) = \xi(\omega, t)$ on Ω as the parameter t runs through the set T; in particular, then, the probability measure P on the σ -algebra $\mathcal{U} = \mathcal{U}_{\xi}$ is Gaussian.

Let P_1 be another Gaussian measure on the σ -algebra \mathcal{U} . It is said to be absolutely continuou with respect to P if $P_1(A)=0$ for P(A)=0, $A\in\mathcal{U}$. It is known that the absolutely continuou measure P_1 is representable as

$$P_1(A) = \int_A p(\omega) P(d\omega), \quad A \in \mathcal{U}, \tag{12}$$

where $p(\omega)$ is nonnegative definite function on Ω called a density and designated $p(\omega) = P_1(d\omega)/P(d\omega)$. Measures P_1 and P are said to be *equivalent* if they are mutually absolutely continuous. The measures P_1 and P are said to be orthogonal if there exist nonover-lapping sets A and $A_1 \in \mathcal{U}$ for which

$$P(A)=1, P(A_1)=0,$$

and

$$P_1(A) = 0, P_1(A_1) = 1.$$
 (13)

The absolute continuity implies in this case that for any $\varepsilon > 0$ there is $\delta > 0$ such that

$$P_1(A) \leqslant \varepsilon \text{ for } P(A) \leqslant \delta$$
 (14)

for all $A \in \mathcal{U}$.

We consider now the Gaussian measures P and P_1 with identical means equal to zero. Let us define the operator A on the Hilbert space $L_T(F)$ into the Hilbert space $L_T(F_1)$ by

$$A\varphi(\lambda) = \varphi(\lambda) \tag{15}$$

for all $\varphi(\lambda) \in L_T^0$. This condition is equivalent to the fact that the operator A is bounded and has a bounded inverse. This can be expressed as

$$A*A \simeq E,$$
 (16)

where A^* is the adjoint operator of A, and E is the identity operator; (16) implies that

$$\|(A^*A)\varphi\|_F \lesssim \|\varphi\|_F, \varphi \in L_T(F).$$

Note that

$$\langle A^*A\varphi, \phi \rangle_F = \langle A\varphi, A\phi \rangle_{F_1} = \langle \varphi, \phi \rangle_{F_1} \tag{17}$$

for any φ, ψ .

We consider the difference

$$\Delta = E - A * A. \tag{18}$$

Lemma 1. If the operator Δ is completely continuous, (16) as well as $\|\varphi\|_F \simeq \|\varphi\|_F$, $\varphi \in L^0_T$ will be satisfied if and only if the operator Δ has no eigenvalue equal to one.

Proof. It is obvious that the condition given by (16) is equivalent to the fact that the operator A*A is bounded and has a bounded inverse $(A*A)^{-1}$. Further, since the operator A*A is positive, the difference A=E-A*A is such that

$$\delta = \sup_{\|\varphi\|_{F}=1} \langle \Delta \varphi, \varphi \rangle \leq 1.$$

We have

$$\langle \varphi, \varphi \rangle_F - \langle A^*A\varphi, \varphi \rangle_F \leqslant \delta \langle \varphi, \varphi \rangle_F$$

and

$$\langle A^*A\varphi, \varphi \rangle_E \geqslant (1-\delta)\langle \varphi, \varphi \rangle_F.$$

Therefore, the bounded operator $(A^*A)^{-1}$ exists for $\delta = 1$. On the other hand, if 1 is the eigenvalue of the operator $E - A^*A$, 0 will be the eigenvalue of the operator A^*A , and therefore the inverse operator $(A^*A)^{-1}$ does not exist.

Theorem 2. Under the condition given by $\|\varphi\|_{F_1} \|\varphi\|_{F_1}$ the Gaussian measures P and P_1 are

^{*} The relationship $\alpha \asymp \beta$ for variables α and β implies that $0 < c_1 \le \alpha/\beta \le c_2 < \infty$ for some constant c_1 and c_2 .

equivalent if and only if $\Delta = \hat{E} - A + A$ is Hilbert-Schmidt.

Proof. Let us consider the spectral representation of the bounded symmetric operator Δ :

$$\Delta = \int \mu E(d\mu),$$

where $E(d\mu)$ is the spectral family of projection operators (unitary decomposition). It is seen that $A*A = \int (1-\mu)E(d\mu)$.

We assume that the spectrum of the operator Δ is not purely discrete. Then outside of a neighborhood $(-\epsilon, \epsilon)$ there is an infinite number of spectral points, and therefore an infinite number of nonoverlapping intervals $[\mu_k, \mu_{k+1}]$, $k=1, 2, \cdots$, such that all invariant orthogonal subspaces of the form

$$E[\mu_k, \mu_{k+1}]L_T(F)$$

are different from zero. Let us choose an element φ_k , $\|\varphi_k\|_F = 1$, from each subspace mentioned above for which

$$\langle A^*A\varphi_k, \varphi_j \rangle_F = \langle \varphi_k, \varphi_j \rangle_{F_1} = \begin{cases} \sigma_k^2 & \text{for } j = k \\ 0 & \text{for } j \neq k \end{cases}$$

and

$$\mu_k \le 1 - \sigma_k^2 \le \mu_{k+1}, \quad (1 - \sigma_k^2)^2 \ge \epsilon^2.$$

The entropy distance r_n between the Gaussian measures P and P_1 on the σ -algebra \mathcal{U}_n generated by the variables $\eta_k = \eta(\varphi_k)$, $k = 1, \dots, n$ is such that

$$r_n \simeq \sum_{k=1}^n (1-\sigma_k^2)^2 \geq \varepsilon^2 n$$
.

It is seen that $r_n \to \infty$ as $n \to \infty$, Gaussian measures P and P_1 are orthogonal on the σ -algebra $\mathcal{U} = \lim_{n \to \infty} \mathcal{U}_n$. Thus, the spectrum of the operator Δ is purely discrete for the equivalent measures P and P_1 . If φ_1 , φ_2 , ..., is a complete orthonormal system of functions with eigenvalues μ_1, μ_2, \dots , the condition

$$\sum_{k} \mu_k^2 < \infty \tag{19}$$

is equivalent to the fact that

$$\lim_{n\to\infty}r_n \stackrel{\sim}{\sim} \sum_{k=1}^{\infty} (1-\sigma_k^2)^2 < \infty,$$

where $\sigma_k^2=1-\mu_k$, $k=1,2,\cdots$, is the complete system of eigenvalues of the operator A*A and r_n is the entropy distance between P and P_1 on the σ -algebra \mathcal{U}_n generated by the variables $\eta_k=\eta(\varphi_k)$, $k=1,\cdots,n$. Therefore, (19) is necessary and sufficient condition for the Gaussian measures P and P_1 to be equivalent, as was to be proved.

Let us note that (19) can be written as

$$\sum_{k} \langle \Delta \varphi_k, \varphi_j \rangle_F^2 \langle \infty$$

and that for any orthonormal system $\psi_1, \psi_2, \dots \in L_T(F)$

$$\begin{split} \sum_{k,j} \langle \varDelta \psi_k, \psi_j \rangle_F^2 &= \sum_k (\sum_j \langle \varDelta \psi_k, \psi_j \rangle_F)^2 = \sum_k \|\varDelta \psi_k\|_F^2 = \sum_k (\sum_j \langle \varDelta \psi_k, \varphi_j \rangle_F^2) \\ &= \sum_i (\sum_k \langle \psi_k, \varDelta \psi_j \rangle_F^2) \leq \sum_i \|\varDelta \psi_j\|_F^2 = \sum_k \langle \varDelta \psi_k, \psi_j \rangle_F^2. \end{split}$$

In the above relations the pertinent inequalities become equalities. It is readily seen that the operator Δ is a Hilbert-Schmidt operator if and only if

$$\sum_{k,j} \langle \Delta \varphi_k, \varphi_j \rangle^2_F < \infty \tag{20}$$

for any complete orthonormal system $\varphi_1, \varphi_2, \cdots$ (20) can immediately be expressed in terms of corelation functionals of the distributions P and P_1 , since

$$\langle \Delta \varphi, \psi \rangle_F = \langle \varphi, \psi \rangle_F - \langle A^*A\varphi, \psi \rangle_F = \langle \varphi, \psi \rangle_F - \langle \varphi, \psi \rangle_{F_1} = B(\varphi, \psi) - B_1(\varphi, \psi)$$

for any $\varphi, \psi \in L_T(F)$. Therefore, under the condition given by $\|\varphi\|_F \leq \|\varphi\|_{F_1}$ a necessary and sufficient condition for equivalence of the Gaussian measures P and P_1 is that for any complete orthonormal system $\varphi_1, \varphi_2, \dots \in L_T(F)$

$$\sum_{k,j} b(\varphi_k, \varphi_j)^2 < \infty \tag{21}$$

where $b(\varphi, \psi) = B(\varphi, \psi) - B_1(\varphi, \psi), \ \psi, \psi \in L_T(F)$.

Let us consider actually the linear space $L^0_{T\chi T}$ of functions of the form

$$\varphi(\lambda,\mu) = \sum_{k,j} c_{kj} e^{i(\lambda s_k - \mu t_j)}$$
(22)

(where s_k , $t_j \in T$ and where c_{kj} are real coefficients). We define $L_{T \times T}(F \times F)$ as a Hilbert space obtained by means of the closure of L_{TT}^0 over the scalar product

$$\langle \varphi, \psi \rangle_{F \times F} = \iint \varphi(\lambda, \mu) \overline{\psi(\lambda, \mu)} F(d\lambda) F(d\mu)$$
 (23)

It is obvious that if $\varphi', \varphi'' \in L_T(F)$, then

$$\varphi(\lambda,\mu) = \varphi'(\lambda)\overline{\varphi''(\mu)} \tag{24}$$

enters into the space $L_{T\times T}(F\times F)$. In this case the system of functions of the type given by (24) is complete in $L_{T\times T}(E\times F)$.

for any functions φ', φ'' and φ', φ'' of the type mentioned above.

Let $\varphi_1, \varphi_2, \cdots$ be an orthonormal system in a Hilbert space $L_T(F)$. Then, obviously, the functions $\varphi_{k,j}(\lambda,\mu) = \varphi_k(\lambda) \overline{\varphi_j(\mu)}$ $k,j=1,2,\cdots$,

comprise a complete orthonormal system in the Hilbert space $L_{T\times T}(F\times F)$. Under the condition given by (20) let

$$b_{k,j}=b(\varphi_k,\varphi_j), \quad k,j=1,2,\cdots,$$

and let $\psi_0(\lambda, \mu) \in L_{T \times T}(F \times F)$ be defined as

$$\psi_0(\lambda, \mu) = \sum_{k,j} b_{kj} \varphi_{kj}(\lambda, \mu) \tag{25}$$

(25) yields the decomposition of $\psi_0(\lambda,\mu)$ over the orthonormal system $\varphi_{kj}(\lambda,\mu)$ so that

$$b(\varphi_k, \varphi_j) = \langle \varphi_k \overline{\varphi}_j, \psi_0 \rangle_{F \times F}.$$

This relation obviously extends to any linear combinations

$$\varphi'(\lambda) = \sum_{k} c_{k}' \varphi_{k}(\lambda), \ \varphi''(\mu) = \sum_{j} c_{j}'' \varphi_{j}(\mu),$$

so that

$$b(\varphi', \varphi'') = \langle \varphi' \overline{\varphi''}, \psi_0 \rangle_{F \times F}. \tag{26}$$

Theorem 3. The Gaussian measures P and P_1 (with zero mean values) are equivalent on the algebra U(T) if and only if the difference between the correlation functions

$$b(s,t) = B(s,t) - B_1(s,t)$$

is representable as

$$b(s,t) = \iint e^{-i(\lambda s - \mu t)} \psi(\lambda,\mu) F(d\lambda) F_1(d\mu)$$
 (27)

for $s, t \in T$, where the function $\psi(\lambda, \mu)$ is such that

$$\iint |\psi(\lambda,\mu)|^2 F(d\lambda) F(d\lambda) F_1(d\mu) < \infty.$$

For the equivalent measures P and P_1 the integral equation given by (27) has a solution $\psi(\lambda, \mu) \in L_{T \times T}(F \times F_1)$. The density $p(\omega) = P_1(d\omega)/P(d\omega)$ of the equivalent measures can be expressed as

$$p(\omega) = D \exp\left\{-\frac{1}{2}\iint \phi(\lambda, \mu) \Psi(d\lambda, d\mu)\right\}, \tag{28}$$

where $\psi(\lambda,\mu)$ is the solution of (27) from the space $L_{T\times T}(F\times F_1)$; D is a normalizing multiplier.

Proof. Since the functions $\varphi(\lambda,\mu)=e^{i(\lambda s-\mu t)}$, $s,t\in T$, form a complete system in the Hilbert space $L_{T\times T}(F\times F_1)$, the relation given by (27) is equivalent, for $\psi(\lambda,\mu)\in L_{T\times T}(F\times F_1)$. If (27) holds true for a function $\psi(\lambda,\mu)$ in the Hilbert space of all square-integrable, the projection of $\psi(\lambda,\mu)$ onto the subspace $L_{T\times T}(F\times F_1)$. Let us consider the densities $p_n(\omega)=P_1(d\omega)/P(d\omega)$ on the σ -algebras \mathcal{U}_n , each of which is generated by variables η_k $k=1, \dots n$.

$$\log p_n(\omega) = M \log p_n - \frac{1}{2} \sum_{k,j=1}^{n} c_{kj} [\xi(t_k) \xi(t_j) - B(t_k, t_j)], \qquad (29)$$

where $\{c_{kj}\}$ is the difference between the matrices inverse to the correlation matrices $\{B_1(t_k, t_j)\}$ and $\{B(t_k, t_j)\}$. The corresponding variables

$$\eta_k(\omega) = \sum_{k,j=1}^n c_{ki} [\xi(t_k) \xi(t_j) - B(t_k, t_j)]$$

appearing in (29) belong to the space $H_2(T)$ and are representable

$$\eta_n = \iint \phi_n(\lambda, \mu) \Psi(d\lambda, d\mu), \tag{30}$$

where

$$\phi_n(\lambda, \mu) = \sum_{k, i=1}^n c_{kj} e^{i(\lambda \ell_k - \mu \ell_i)}$$
(31)

It is easy to verify that each function $\phi_n(\lambda, \mu)$ satisfies an equation of the type given by (27),

$$\iint e^{-i(\lambda s - \mu t)} \phi_n(\lambda, \mu) F(d\lambda) F_1(d\mu) = b(s, t), \tag{32}$$

for $s, t=t_1, \dots, t_n$. In fact, this equality can be rewritten in matrix form

$${B(t_k, t_i)} {c_{ki}} {B_1(t_k, t_i)} = {b(t_k, t_i)},$$

where

$${c_{ki}} = {B_1(t_k, t_i)}^{-1} - {B(t_k, t_i)}^{-1},$$

and it follows immediately that

$$\begin{aligned}
\{B(t_k, t_j)\} \{c_{kj}\} &= \{B(t_k, t_j)\} \{B_1(t_k, t_j)\}^{-1} - E, \\
\{B(t_k, t_j)\} \{c_{kj}\} \{B_1(t_k, t_j)\} &= \{B(t_k, t_j)\} - \{B_1(t_k, t_j)\} = \{b(t_k, t_j)\}
\end{aligned}$$

We can rewrite (32) also as

$$\langle \varphi, \psi_n \rangle_{F \times F_1} = b(s, t), \quad s, t \in T_n,$$

where $T_n = \{t_1, \dots, t_n\}$ and $\varphi(\lambda, \mu) = e^{i(\lambda s - \mu t)}$, $s, t \in T_n$. It is clear that for $m \le n$ the function $\psi_m(\lambda, \mu)$ coincides with the projection of the element $\psi_n(\lambda, \mu) \in L_{T_n \times T_n}(F \times F_1)$ onto the subspace $L_{T_n \times T_n}(F \times F_1)$ so that

$$\|\psi_n - \psi_m\|_{F \times F_1}^2 = \|\psi_m\|_{F \times F_1}^2 - \|^2 \psi_n\|_{F \times F_1} \longrightarrow 0$$

as $m, n \to \infty$, since the sequence $\|\psi_n\|^2_{F \times F}$, $n=1, 2, \cdots$, turns out to be monotone decreasing and $\|\psi_n\|^2$ exists.

It is also seen that since the Hilbert space $L_{T\times T}(F\times F_1)$ coincides with the closure of extending spaces $L_{T_n\times T_n}(F\times F_1)$, $n=1,2,\cdots$, with each function $\psi_n(\lambda,\mu)$ in (32) being the projection of $\psi(\lambda,\mu)$ $\in L_{T\times T}(F\times F_1)$ by (27), $\lim_{n\to\infty} \psi_n(\lambda,\mu) \in L_{T\times T}(F\times F_1)$ has the property that

$$\psi(\lambda,\mu) = \lim_{n\to\infty} \psi_n(\lambda,\mu).$$

This fact implies that the variables η_n of the type given by (30) appearing in (29) converges in the mean to the variable

$$\eta = \iint \psi(\lambda, \mu) \Psi(d\lambda, d\mu) \in H_2(T).$$

Therefore, the density $p(\omega) = P_1(d\omega)/P(d\omega)$ on the σ -algebra $\mathcal{U}(T)$ can be determined by the limit relation given by

$$\begin{split} \log p(\omega) &= \lim_{n \to \infty} M \log p_n + \lim_{n \to \infty} [\log p_n - M \log p_n] \\ &= \lim_{n \to \infty} M \log p_n - \frac{1}{2} \lim_{n \to \infty} \eta_n(\omega) \\ &= \lim_{n \to \infty} M \log p_n - \frac{1}{2} \lim_{n \to \infty} \iint \phi_n(\lambda, \mu) \Psi(d\lambda, d\mu) \\ &= \log D - \frac{1}{2} \iint \phi(\lambda, \mu) \Psi(d\lambda, d\mu), \end{split}$$

which yields (28).

References

- 1. D.R. Cox and H.D. Miller, The Theory of Stochastic Processes, John Wiley & Sons, Inc., New York, 1965.
- 2. I.A. Ibragimov and Y.A. Rozanov, Gaussian Random Processes, Springer-Verlag, New York Inc., 1978.
- 3. S. Karlin and H.M. Taylor, A First Course in Stochastic Processes (2nd edition), Academic Press, Inc., London, 1975.
- 4. J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York, 1973.