Note on the Gelfand Integral

By Bok-Dong, Yoo

National Tax College, Su-won, Korea

1. Introduction

A theory of integration similar to the Bochner integral is impossible for functions that are only weak*-measurable.

Furthermore, it is impossible to use the Bochner integral theory directly to integrate a function f if $\|f\|$ is not integrable.

Nevertheless, there are simple things available to integrate some such functions and as a small part of Gelfand contribution to functional analysis shows this simple method has some strong properties which will be presently investigated.

Let (Ω, Σ, μ) be a finite measure space and X a Banach space.

If $f: \Omega \rightarrow X^*$ is X-measurable, then f is called weak*-measurable.

Let f be a weak*-measurable function on Ω such that $xf \in L_1(\mu)$, for all $x \in X$, then the Gelfand integral of f over $E \in \Sigma$ is defined by the element $x_E: X^*$ such that

$$x_E^*(x) = \int_E x f d\mu$$

for all $x \in X$.

2. Main theorems

Theorem 1. Suppose f is weak*-measurable function on Ω and $xf \in L_1(\mu)$ for all x in X. Then for each $E \in \Sigma$ there exists the Gelfand integral of f over E.

Proof. Let $E \in \Sigma$ and define $T: X \rightarrow L_1(\mu)$ by $T(x) = x(fx)$). Note that T is closed. Indeed, if $\lim_n x_n = x$ and $T(x_n) = g$ exists in $L_1(\mu)$, then some subsequence $x_n(fx_n) = T(x_n)$ tends μ-almost everywhere to g.

But $\lim_n x_n(fx_n) = x(fx)$ everywhere. Hence $xf=g \mu$-almost everywhere and T is a closed linear operator.

It is easy to see from closed graph theorem that T is continuous. Hence $\|x(f)\| \leq \|T\| \cdot \|x\|$.

Therefore there exist the element x_E^* of X^* such that $x_E^*(x) = \int_E x f d\mu$ for all $x \in X$, and $E \in \Sigma$.

Theorem 2. If f is Gelfand integrable, then $\int_{\Sigma} f d\mu$ is weak* countably additive vector measure on Σ.

Proof. If (E_n) is a sequence of disjoint members of Σ, then
\[x \left(\bigcup_{n=1} x_{E_n} f d\mu \right) = \sum_{n=1} x \left(\bigcup_{E_n} x f d\mu \right) = \sum_{n=1} x_{E_n} x f d\mu \]

References