DOI QR코드

DOI QR Code

Effect of Poly(vinyl alcohol) on the Thermally Induced Conformational Change of Poly(D-Glutamic acid)

  • Cho Chong-Su (Department of Chemical Engineering, Chonnam University) ;
  • Published : 1982.06.30

Abstract

In relation to denaturation of proteins, thermally induced conformational change of poly(D-glutamic acid) was studied in the presence of poly(vinyl alcohol) at low pH, where poly(D-glutamic acid) undergoes a helix-to-${\beta}$ transition without any other polymer. In a dilute solution, poly(vinyl alcohol) enhanced the ${\alpah}-to-{\beta}_1$ transition of poly(D-glutamic acid) due to intermolecular interaction between the two polymers. On the other hand, this conformational change was interrupted to a large extent in a concentrated solution, due to the interpenetration of poly(vinyl alcohol) chain into poly(D-glutamic acid) chain which prevented the intramolecular association of poly(D-glutamic acid) chain. A conformational change from ${\beta}_1\;to\;{\beta}_2$ of poly(D-glutamic acid) was observed for the films obtained by casting during annealing the mixture solutions. The ${\beta}_2$ content in the cast film increased with increasing poly(vinyl alcohol) content in the mixture.

Keywords

References

  1. Makromol. Chem. v.179 C. S. Cho;A. Nakagami;T. Komoto;T. Kawai
  2. Nippon Kagaku Zasshi v.82 J. Noguchi;T. Saito;T. Hayakawa;H. Tokuyama;T. Harada
  3. Chem. Abstr. v.56 J. Noguchi;T. Saito;T. Hayakawa;H. Tokuyama;T. Harada
  4. J. Phys. Chem. v.65 A. S. Michaels;R. G. Miekka
  5. Biopolymers v.4 W. B. Gratzer;P. Mcphie
  6. Biochemistry v.7 G. G. Hammes;S. E. Schullery
  7. Vysokomol. Soyedin. v.A14 A. B. Zezin;V. V. Lutsenko;V. B. Rogacheva;O. A. Aleksina;R. I. Kalyuzhnaya;V. A. Kabanov;V. A. Kargin
  8. J. Polym. Sci., Polym. Chem. Ed. v.10 E. Tsuchida;Y. Osada;K. San ada
  9. Biopolymers v.12 R. A. Gelman;W. B. Rippon;J. Blackwell
  10. Biopolymers v.12 R. A. Gelman;D. N. Glaser;J. Blackwell
  11. Biopolymers v.12 R. A. Gelman;J. Blackwell
  12. Arch. Biochem. Biophys. v.159 R. A. Gelman;J. Blackwell
  13. Vysokomol. Soyedin. v.A16 S. P. Valuyeva;A. B. Zezin;V. A. Savin
  14. Makromol. Chem. v.175 E. Tsuchida;Y. Osada;K. Abe
  15. Makromol. Chem. v.175 E. Tsuchida;Y. Osada
  16. Polym. J. v.7 H. Sato;A. Nakajima
  17. Macromolecules v.9 E. Tsuchida;K. Abe;M. Honma
  18. Polym. J. v.8 K. Shinoda;T. Hayashi;T. Yoshida;K. Sakai;A. Nakajima
  19. Biopolymers v.15 K. P. Schodt;J. Blackwell
  20. Kobunshi Ronbunshu v.33 M. Hosono;S. Sugii;O. Kusudo;W. Tsuji
  21. J. Appl. Polym. Sci. v.20 Y. Kikuchi;Y. Onishi;M. Kodama
  22. Polym. J. v.9 K. Abe;M. Koide;E. Tsuchida
  23. Polym. J. v.9 K. Abe;E. Tsuchida
  24. Makramol. Chem. v.178 H. Fukuda;Y. Kikuchi
  25. Kobunshi Ronbunshu v.35 S. Sugii;M. Hosono;R. Kitamaru
  26. Biopolymers v.17 S. Hirano;C. Mizutani;R. Yamaguchi;O. Miura
  27. Bull. Chem. Soc. Jpn. v.51 H. Fukuda;Y. Kikuchi
  28. Makromol. Chem. v.179 K. Abe;H. Ohno;A. Nii;E. Tsuchida
  29. Macramol. Chem. v.179 T. Komoto;Y. Kojima;T. Kawai
  30. Polym. Prepr. Japan v.17 A. Nakajima;S. Tanaka
  31. Biopolymers v.15 K. Itoh;B. M. Foxman;G. D. Fasman
  32. Biochemistry v.8 N. Greenfield;G. D. Fasman
  33. Nature v.161 C. W. Bunn