Abstract
Reactions of cobalt(II) chloride with 2,2'-dipyridylamine (dpa) in alcoholic solutions afford the complex of octahedral $Co(dpa)_2Cl_2{\cdot}CH_3OH$. The octahedral complex is converted to tetrahedral $Co(dpa)Cl_2$ in certain solvents or at the elevated temperature, and the tetrahedral complex is changed to the octahedral one with added dpa. The electronic spectra of the complexes in DMF, measured with various concentrations of 2,2'-dipyridylamine, establish the equilibrium; $td-Co(dpa)Cl_2+dpa_\rightleftarrows^Koh-Co(dpa)_2Cl_2$. The equilibrium constants determined by the analysis of the visible spectra are 6.4, 3.6 and 2.0 $M^{-1}$, respectively, at 25.5, 38.0 and $49.0^{\circ}C,\;with\;{\Delta}H^{\circ}\;and\;{\Delta}S^{\circ}$being -9.5 kcal/mole and -28 eu.