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Structural Aspects in the Theory of Random Walk

H. Heyer*

Random walks as special Markov stochastic processes have received particular attention
in recent years. Not only the applicability of the theory already developed but also its
extension within the frame work of probability measures on algebraic-topological stru-
ctures such as semigroups, groups and linear spaces became a new challenge for research
work in the field. At the same time new insights into classical problems were obtained
which in various cases lead to a more efficient presentation of the subject. Consequently
the teaching of random walks at all levels should profit from the recent development.

It has been said that Nicolas Bourbaki, the anonymous founder of the encyclopedia
“Eléments de Mathématique”, started his remarkable work with a discussion between
A. Weil und J. Delsarte about how to teach analysis properly. We are certainly following
a well established tradition if we try to describe certain aspects of the theory of random
walks on the basis of the new knowledge available with the aim to teach the subject
with greater satisfaction and effect.

We chose random walks in order to exemplify our thoughts by two reasons: First
of all these stochastic processes are easily motivated and favorably described at various
levels of mathematical background without too much technical display. Secondly random
walks can be viewed as auxiliary objects in order to establish (approximate) the well
known Brownian motion process. Thus an introduction to probabilty theory could well
be oriented at A. Joffe’s Lecture Notes carrying the title “Promenades aléatoires et
mouvement Brownien”(1965). Since an analysis of Brownian motion at less advanced
levels of teaching is hardly possible, we restrict ourselves to the discussion of random

walks and leave the transition to Brownian motion to the initiative of the reader. Within
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the theory of random walk which has been layed out in selfcontained form in the book
(1964) by F. Spitzer we choose the problem of recurrence to describe the structural
aspects of the theory. Here recurrence means the capacity of the random walk to
return to a given position within a certain interval of time. We intend to discuss
recurrence at four levels of increasing mathematical sophistication:

(a) via difference equations,

(b) operator theoretically

(¢) probabilistically, and

(d) within the frame work of topological groups.

Thus random walks are regarded here not only as objects of probability theory but at
the same time as objects of analysis, with their natural relationship to combinatorics
and group theory. At the most advanced level descibed under (d) the significance of
the algebraic-topological structure of a random walk will become clear. Various results
on random walks depend on the structure of the state space as a locally compact group.
This view has become popular since the monograph{1975) of D. Revuz and (1977) of the
author. We restrict our attention to the presentation of a small selection of contributions
taken from the works of P. Baldi(1981), A. Brunel(1974), Y. Guivarc’h, M. Keane, B.
Roynette(1977), and B. Roynette(1978). Despite of these more advanced sources the
new insights into a structural understanding of recurrent random walks can already be
traced in the by now classical literature. K.L. Chung in his textbook(1974) tries to
emphasize the significance of the algebraic properties of the state space of a Markov
chain, the book(1960) by J.G. Kemeny and E.J. Snell contains an elaborate treatment
of finite Makov chains in terms of their transition matrices, and last not least W.
Feller’s book(1957) still remains the most comprehensive and elegant source also for
those readers who are interested in a complete description of the class of all locally

compact groups on which every random walk is recurrent.

1. Bernoulli Random Walks

Let a particle move step by step on the real line R. With every step it moves by
one unit either to the right or to the left, with probability p or g, g=1—p, p=[0, 11,
respectively. Without loss of generality we assume that the following step is taken after

a unit of time. Then the n-th step is taken at time n. We also assume that the possible
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positions of the particle are elements of the lattice Z of integers. Thus we are con-
cerned with a sfochastic process with Z as its state space, which is also called a
random walk on Z. This random walk can be illustrated by its path mapping n—S,
which assigns to every time # the position S, of the particle. The following mathematical
description seems to be in order:

Let X, denote the n-th step (or n-th move or n-ih jump) such that
(@) X.=+1 or X,=—1 with probability p or g respectively.
(0) (X.)nex is an independent sequence.

Then the position of the particle at time »n (after # steps) is just

Se=Se+ X+ + X
Thus the random walk under discussion is represented as the sequence (S,)ncz 4 On
the other hand
Sa=So=X,++ X,

defines a sum of independent Bernoulli random variables such that the random walk
(Sw)nez, is reasonably well named a Bernoulli random walk.

A few typical problems on a Bernoulli random walk are designed to motivate its
recurrence behavior which we will make precise in the sequel.
A. Let a,b = R, a,b21, c=a+b. Consider the interval I=[o,c]. We assume that
the Bernoulli random walk starts at @ < 1.
Problem. What is the probability that the random walk
(i) hits o before it hits ¢ or that
(ii) it hits ¢ before it hits o?
Solution to (i). For every 1=j=c—1 we put

u;=probability that the random walk
hits o prior to ¢ if it starts in j.

What we have to determine is #.. For this we consider the difference equation

¢)) us=pus+qu;-y 1<j=c—1)
under

u,=1 and
@

U.—=0.

This set up is appropriate. In fact, let the particle be in j. After the next step it will
be in j+1 with probability p, and under this conditional probability that the particle

reaches o prior to ¢ equals u,.,. Moreover, with probability g the particle will be in
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j—1, and under this condition the corresponding conditional probability is u#;-;. The
formula of total probability yields equation (1D.
Result. For o<j=<c we get

riove =49
J =7 if 7 ) #1,
Ui = .
1 7, it r=l
C

and consequently uaz—lc’— whenever r=1.

Solution to (ii). This is achieved via the defintion
y,=probability that the random walk
hits ¢ prior to o if it starts in j.

Result. For o=j<c¢ we get

which implies vuz—z— whenever r=1.
In general we observe that #; +v,=1 for all o= j=<c, a fact which leads us to the
following
B. Problem. Let the Bernoulli random walk start in . What is the probability that it
ever reaches the boundary of 1?
Result. The random walk does not remain with probability 1 in the given interval L
This statement motivates the notion of waiting time W; for the interval I and start
in j defined as the first time at which the random walk hits o before ¢ after it has
started in j. From the preceding discussion we know that W, takes values in Z..
For the expected value e,=E(W,) of the waiting time W, we obtain a difference

equation analogous to the above one

an e;=peis,+qei-1+1 (1§j§6“1>
under

¢,=0 and
@29

e.=0.

If p=qg=-L1, its solution is e,=j(c—7).
We return to Problem B and look at the limiting behavior of u;=u;(¢) for ¢—co0

(Open boundary).
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Clearly

lim u;(c)=

o

vi, if r<l1,
[ , if  rzl.
C. Problem. Let the Bernoulli random walk start in ¢>1. What is the probability that
it will eventually return (recur) to a?
Result. This probability obviously equals

<%>., , if - p>g,

1, if p=q

In the special case of a symmetric Bernoulli random walk defined by pzq:%, any
point is hit arbitrarily often with probability 1 wherever the random walk starts, i.e..
Symmetric Bernoulli random walks are recurrent.

We add a game theoretic interpretation of the above problems A, B and C. This
interpretation concerns the well known ruin problem for gamblers. Let G, and Gir be
two gamblers gaining with probabilities p and ¢ respectively. It is the rule that iﬁ each
of the independent parts the loser pays 1 dollar say to the winner. G; and Gy; start
with initial capitals of @ or & dollars, respectively.

A G Problem. What is the probability that either G; or Gy; is ruined?
Result in terms of the results to A(i) and A(i):
G is ruined¢=The Bernoulli random walk reaches o before c.
G is ruined<=The Bernoulli random walk reaches ¢ before o.
B G Problem. What is the probability that either G; or G;; will be ruined?
Result. This probability is 1, i.e., eventually G; or G;; will be ruined (if there is no
time limit to the game!)

The notions of waiting (or absorption) time refer to the length of the game.

Obviously

Icifﬂ u;(c)=probability of ruin of G, in a game against the infinitely rich partner

G

C G Problem. We discuss the probability of ruin in the context of the result to Problem
C.
The case p>g, i.e., G; has better chances than G;. Let G; possess just 1 dollar, and
let G;; be infinitely rich. Nevertheless G; has a chance 1—% of avoiding the ruin.
Thus in the case p=g, G; can eventually win with probability 1 any prescribed amount.

This statement, however, takes into account the fact that arbitrarily large debts might
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become necessary during the game. Under the assumption p=g¢ the game is called

Sfair.
2. The Analytic Approach

We shall now consider the p-dimensional lattice Z* as a discrete subgroup of the

p-dimensional Euclidean space R¢ furnished with the usual norm ||-|| defined by
a 1
lali=(3 212 )}
for all x=(x1, -+, ¥ =R? (d=1).
Definition. A framsition function P on E=Z%is a mapping ExXE—R having the
following properties:
(T1D) (Positivity) P(x,y)=0 for all x, y&E.
(T2) (Spatial homogeneity) P(x,y)=P(o,y—x) for all x, y=E.
(T3) (Norming) x§e] EP(O, =1
(T2) implies that P is determined by the function x—p(x)=P(o, x)

on E satisfying
(T1) p(x)=0 for all x&kE.
(T3 x%ﬂp(x):l for all x&E.
Thus p can be interpreted as a probability measure on E.

We shall use the terminology that P describes a random walk on the space E=74,
or that P is a riandom walk on the d-dimensional lattice.
Examples. (1) The Bernoulli random walk (d=1) is given by
p=0, if x=1,

g=1—-p=0, if x=—1.
(2) The simple random walk (d=1) is defined by

Plo,x)= [

1 .
-, if lxll=1
2d ’
P(o, %)= [
0, if llxll#1,

For d=1 we obtain the symmetric Bernoulli vandom walk.

Given an arbitrary random walk P on E=Z¢ we note that P(0,x) equals the
probability of a one-step transition from ¢ to x. We want to study the probability
P.(o, x) that the random walk starting at ¢ arrives at x&FE after an n-step transition

described by P. In Example (1) we have
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P.(o, x)=probability of ”Zi successes in # independent Bernoulli trials

Ntz om-x, H
p*q? (n—f—x) if n+x is even, |x|<n,
= 2

0, otherwise.
More generally we define for the given random walk P on E
1, if x=y,
P.(x, y)zs(x,y)=[ )
0, if x+y,
P,(x,y)=P(x,y) for all (x,y)=EXE,
and for n=2
P.(x, )= P(x, 2 )P(x, %) .. *P(Xn-1, )
Fpy oo oy K- )SE1
whatever (x, y)eExE.
We note that for every pair (x,y)SExXE
P.(x, y)=probability that the random walk starting in x at time o
will reach y at time ».
Here we do not restrict the random walk’s positions between times ¢ and s But this
observation gives rise to the following
Definition. For #=>0 let
F.(x, y)=probability that the random walk starting in x at time o
will reach y at time n for the first time.
More formally we put
EFy(x, y)=0 for all (x,y)=EXE,
F\(x,y)=P(x,y) for all (x,y)=EXE,
and for n=2
Fo(%, ) =2 P(x, 2D P(x;, x2)-. . .« P(X0-1, )
Xy vy XD ECE {3}
whatever (x,yV)EEXE.

More notation. For all n=Z,, x, y=FE we put
Ga(x, )= éoPk(x, )
G(x, y)=lim G.(x,) =ZPu(x, )= 0o,
1 -+00 0

and
G=G(0,0).
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Analogously we set

F(x, y)=lim F.(x,y) <1,

and
F=F(0,0).
Definition. A random walk P on E is said to be recurrent if F=1.

The following result is easy to prove:

Theorem. G=—1—_17
with the conventions G=o0 iff F=1.
Example (1). For the Bernoulli random walk introduced above one computes for all
nzl
P.(0,0)=0 if »n is odd

and
2n -1
Per(0,0)=Cpa)"(%) =(—1(apa | "2 ),
n
hence obtains
{(1—41)4)‘* <o, if  p#4,
G=oo , it p=a
Résumé, The Bernoulli random walk on Z is recurrent iff p=q=L, i.e., on Z the
symmetric Bernoulli random walk is the only recurrent simple random walk.

So far we obtained a recurrence result only in the case of dimension d=1. For di-

mension d=2 the situation is more complicated as Polya observed already in 1921.

3. The Probabilistic Elaboration

From now on the measure theoretic foundation of probability theory will be used in
order to handle the notions of a probability space, random variables, their distributions,
the expected value, stochastic independence and so forth.

The probabilistic description of a random walk P on E=Z¢for d=1 can be given
in terms of its set of paths or in terms of its sequence of jumps. In any case one
constructs for the given transition function P on E a probability space

(Q, , Pr)=(E, #(E), P)"
where Q=FEV, &/ =g¢-algebra generated by the cylinder sets Za,» of the form
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Zayn={0=(0)rev&EQ : (0y,..., 0.)=A}
for sets ACE", n=N, and Pr is a probability measure on (Q, %) determined by
PriXi=x,, -, Xo=x.]1=P(0,%)-... -P(0, x,)
for all x,, -, x,=E, nsN.
For every £=1 we denote by X, the k-th projection of Q onto E, and for every
n=1 we set
S.=0 as well as,
[s,.: 3 X,
kmt
Clearly for every n=1 and x, y=E we have the equality
P.(x, )=Pr[S.=y—x]
which justifies the previously suggested interpretation of the transitions of the random
walk P. For any w=Q
(Si(®), Se(w),...) describes the path of P and
(Xi(@), Xo(w),...) its sequence of jumps.
Definition. A mapping 7 from the measurable space (Q, &) into the measurable space
(NU {eo}, P(NU{o0})) is said to be a stopping time for the random walk P if for
all n>1
[(T=nlcA ([(Xi=x:] : 2uEE for k=1, -, 0),
where the latter symbol stands for the o-algebra generated by the sets [X.=x.] for
0EE, k=1, -, n.
We note that the events [7=#] depend only on the past {Xi, -, X.}, but not on the
Juture {X.+1, Xoss,+++} of the random walk P.
Example. Let ACE. We introduce by
inf (neN:S.(w)=A} ...} #¢ ,
TA(&))=[ )
o otherwise ,
for all w=Q the first hitting time of the set A.
Obviously T, is a stopping time for P.
With this terminology we can continue our probabilistic interpretation.
For every neN and x,y=E,
Fo(x,)=Pr[Ty-ry=n],
for x, yeF
F(x,)=Pr[Ty- <ol

Now let us introduce the measurable sets
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Ai=18:=0] for k=1

and
Ao=Ilm A,=N U As
n-00 nel han
Theorem. Let P be a random walk on E : =Z° for dz=1.
Then

(i) P is recurrent iff Pr(A«)=1.
(i) P is transient iff Pr(S.)=0.
Further interpretations can be given. Since for neN and x&FE
P.(0, x)=Pr[S.=x1=Ep,(1;50=5),

G (0, %) :E(zl)

equals the expected number of visits in x=E within # units of time when the random

walk starts in o.
4. The Structure of Recurrent Random Walks

Let G be a locally compact group (written multiplicatively with unit ¢) having a
countable basis of its topology. We consider the set A (G)=M' (G, RB) of all Radon
(or Borel) probability measures on (the Borel g-algebra & of) G. In #'(G) we introduce

the vague topology and the convolution operation defined for the measures pveM
(G) by
()= ([ fCey)p@n)nidy)

for all continuous real functions real functions f on G with compact support. Furnished
with vague topology and convolution 4!(G) becomes a topological semigroup with the
Dirac measure ¢, in e as neutral element. !(G) is commutative iff G is Abelian, and
compact iff G is compact. Further properties of " (G) are discussed in the literature
on probability theory on locally compact groups.

Definition. A tramsition function (or Markov kernel) on G is a mapping P:.GXA—-R
such that

(M1D P(x, B)=0 for all (x,B)eGXA.

(M2) For all BE® the mapping x—P(x, B) is @B-measurable.

(M3) For all x=G the mapping B—~P(x,B) is a probability measure on (G, %).

A transition function P on G is said to be trauslation invariant if
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P(x+y,B+y)=P(x, B)
for all (x, B)eGX % and y=G.
For any measure u= #(G) we define a random walk on G by the transition func-
tion P, on G given by
Pu(x, B) = (ex ) (B)=p(Bx~1)
for all (x, BY=GXx%.
Examples. The random walks discussed in the previous sections are, of course, random
walks on the group G=2Z¢ for dz=]. Since in this case G is discrete, it suffices to
consider the transition probabilities
P(x,9)=Pu(x, {3 =p(y—x)
for all x, y=G, where g denotes the probability measure on G determined by P in the
form ‘
u({x})=P(o, x)
for all x&G.
There is a probabilistic description of the random walk P, on G as in Section 3, i.e.,
for P, there exists a stochastic process (a Markov chain) to be constructed on the
space
(Q, , Pr)=(G, &, p)".

Definition. For the random walk P, on G we introduce its potential kermel as the
measure

G=% ur

nz0

on G (which is not necessarily finite).
Definition. The random walk P, is called recurrent if
G(0)=oo0
for all nonempty open sets 0=4.
Definition. A locally compact group G (with a countable basis) is said to be recurrent
if there exists at least one recurrent random walk on G.
Examples.
(1) Al compact groups, in particular the torus groups T for d=1, are recurrent.
(2) All groups of the form G=R% x Z% with d,+d,<2 are recurrent.
Remark. An interesting result of A. Brunel and D. Revuz states that if on G every
symmetric random walk is recurrent, then G is necessarily compact.

(3) Free groups with =2 generators are #ot recurrent.
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In the following we quote a few results which indicate the intimate relationship
between the existence of recurrent random walks and the structure of its underlying
groups.

Theorem. 1. Let G be a countable discrete Abelian group.
The following statements are equivalent:

(i) G is recurrent.
(ii) For the rank 7(G) of G we have r(G)<2.

Theorem. 2. Let G be an arbitrary Abelian locally compact group with a countable

basis. Then ‘
G=R~xH,

where H contains an open, compact subgroup K.

We have the equivalence of
(i) G is recurrent.

(ii) G,ax» is recurrent.

But G, xx=R"XGy,
where G, is countable.

Then (with Theorem 1) we get the equivalence of

(i) G is recurrent.

(i) n+r(GH=2.

Simple application.

Z¢ is recurrent iff d<2.

This statement is related to Polyd’s result that the simple random walk is recurrent
on Z2, but is transient on Z3,

The most complete result concerning recurrence of groups is due to P. Baldi.
Theorem. 3. For any connected Lie group G the following statements are equivalent:
(i) G is recurrent.

(ii) G is of polynomial growth of degree <2, i.e., for any relatively compact neighbo-

rhood V of e generating the whole group G there exists a constant ¢>>( such that
w(V)<en?
for all n=N, where o denotes a left Haar measure of G.
There is still the open problem of characterizing all recurrent groups among the non-

Abelian non-connected ones. The following profound result of P.S. Novikov and S.L

Adyan indicates what kind of obstacles have to be overcome: There exists an infinite
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group G such that x*=e for all =G, where N is a fixed integer >0.
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