An Explicit Solution for Multivariate Ridge Regression

Min Woong Shin* & Sung H. Park**

ABSTRACT

We propose that, in order to control the inflation and general instability associated with the least squares estimates, we can use the ridge estimator

$$\hat{B}^* = (X'X + kI)^{-1}X'Y : k \ge 0$$

for the regression coefficients B in multivariate regression. Our hope is that by accepting some bias, we can achieve a larger reduction in variance. We show that such a k always exists and we derive the formula obtaining k in multivariate ridge regression.

1. Introduction

Let y_1, \dots, y_p be $N \times 1$ vectors representing N independent observations on each of p correlated dependent random variables.

Assume the linear model

$$(1.1) y_j = X\beta_j + u_j, \quad j = 1, \dots, p,$$

where X is an $(N \times q)$ matrix of known form and may be thought of as arising either as a "functional" or a conditional" regressor matrix; β_i is a $(q \times 1)$ vector of parameters; u_i is a $(N \times 1)$ vector of errors and $E(u_i) = 0$, $Var(u_i) = I\sigma^2$, so the elements of u_i are uncorrelated. For a given j, (1.1) is a univariate regression.

The basic model equation may be written in a more compact form in the following way. Define

$$Y \equiv (y_1, \dots, y_p), \ U \equiv (u_1, \dots, u_p), \ B \equiv (\beta_1, \dots, \beta_p)$$

Then (1.1) becomes

(1.2)
$$Y = X \quad B + U.$$

$$(N \times p) \quad (N \times q) \quad (q \times p) \quad (N \times p)$$

^{*} Department of Mathematics, Hankuk University of Foreign Studies.

^{**} Department of Computer Science and Statistics, Seoul National University.

60 統計學研究

To define the multivariate regression model completely, impose the following assumptions and constraints on the quantities in (1.2)

$$(1.3) p+q \leq N$$

$$(1.4) rank(X) = q$$

Define the rows of U by

$$U\equiv(v_1,\cdots,v_N)'$$

where v_i is a $(p \times 1)$ vector, $j=1, \dots, N$.

(1.5)
$$E(v_i) = 0$$
, $Var(v_i) = \sum \equiv (\sigma_{ij})$ and $\sum > 0$ (positive definite).

An alternative form of this assumption, which is obtained by stringing out the columns of U into a long $Np \times 1$ vector u, where $u' \equiv (u_1', \dots, u_p')$. Then

(1.6)
$$E(u) = 0$$
, $Var(u) = \sum \bigotimes I_N$ (\bigotimes is the direct product)

(1.7)
$$\mathcal{L}(v_i) = N(0, \Sigma), j=1, \dots, N.$$
 (\mathcal{L} means probability law).

2. Multivariate Ridge Regression

From the notation and assumptions we know that

$$\hat{B} = (X'X)^{-1}X'Y$$

as an estimate of B and this gives the total minimum sum of squares of the residuals:

$$\phi(\hat{B}) = \sum_{i=1}^{p} (y_i - X\hat{\beta}_i)' \quad (y_i - X\hat{\beta}_i)$$

where X is $N \times q$ matrix of the known independent variables.

(2.1)
$$\operatorname{Var}(\hat{\beta}) = \sum \otimes (X'X)^{-1}$$

where $\hat{\beta}' \equiv (\hat{\beta}_1', \dots, \hat{\beta}_{P}')$

(2.2)
$$L_{1}^{2} \equiv \sum_{j=1}^{r} (\hat{\beta}_{j} - \beta_{j})' (\hat{\beta}_{j} - \beta_{j})$$

where L_i is distance from \hat{B} to B.

(2.3)
$$E(L_1^2) = \sum_{j=1}^{p} \operatorname{Tr}(X'X)^{-1} \sigma_j^2$$

If the eigenvalues of X'X are denoted by

$$(2.4) \lambda_{\max} = \lambda_1 \ge \cdots \ge \lambda_p = \lambda_{\min} > 0,$$

then the average value of the squared distance from \hat{B} to B is given by

(2.5)
$$E(L_1^2) = \sum_{j=1}^{p} \sigma_j^2 \left(\sum_{i=1}^{q} (1/\lambda_i) \right)$$

and the variance when the error is normally distributed is given by

(2.6)
$$\operatorname{Var}(L_1^2) = \sum_{j=1}^{p} \left(2\sigma_j^4 \left(\sum_{i=1}^{q} (1/\lambda_i)\right)^2\right)$$

Hence, if the shape of the factor space is such that reasonable data collection results in an X'X with one or more small eigenvalues, the distance from \hat{B} to B will tend to be large. In order to control the inflation and general instability associated with the least squares estimators, we might use a ridge estimator,

$$\hat{B}^* = (X'X + kI)^{-1}X'Y : k \ge 0$$

in multivariate regression.

The relationship of a ridge estimate to an ordinary estimate is given by the alternative form

(2.8)
$$\hat{B}^* = (X'X + kI)^{-1}X'Y$$
$$= (X'X + kI)^{-1}X'X\hat{B}$$
$$= (I + k(X'X)^{-1})^{-1}\hat{B}$$
$$= Z\hat{B}$$

Let \overline{B} be any estimate of the vector B. Then the residual sum of sruares can be written as

$$\phi = \sum_{j=1}^{P} (y_j - X\bar{\beta}_j)'(y_j - X\bar{\beta}_j)$$

$$= \sum_{j=1}^{P} (y_j - X\hat{\beta}_j)'(y_j - X\hat{\beta}_j) + \sum_{j=1}^{P} (\bar{\beta}_j - \hat{\beta}_j)'X'X(\bar{\beta}_j - \hat{\beta}_j)$$

$$= \phi_{\min} + \phi(\bar{B})$$

The ridge regression coefficient matrix \hat{B}^* is the single value of B which is the one with minimum length for a fixed ϕ .

This can be stated precisely as follows:

(2.9) Minimize
$$\sum_{j} \bar{\beta}_{j}' \bar{\beta}_{j}$$
 subject to
$$\sum_{i} (\bar{\beta}_{i} - \hat{\beta}_{i})' X' X(\bar{\beta}_{i} - \hat{\beta}_{i}) = \phi_{0}$$

62 統計學研究

As a Lagrangian problem this is

minimize
$$F = \sum_{j} \bar{\beta}_{j}' \bar{\beta}_{j} + (1/k) \left(\sum_{j} (\bar{\beta}_{j} - \hat{\beta}_{j})' X' X (\bar{\beta}_{j} - \hat{\beta}_{j}) - \phi_{0} \right)$$

where (1/k) is the multiplier.

Then

$$\frac{\partial F}{\partial \hat{\beta}_j} = 2\bar{\beta}_j + (1/k)(2(X'X)\bar{\beta}_j - 2(X'X)\hat{\beta}_j) = 0, \quad j = 1, \dots, p.$$

This reduces to

$$\bar{\beta}_i = \hat{\beta}_i^* = (X'X + kI)^{-1}X'y_i, j = 1, \dots, p.$$

That is,

$$\overline{B} = \hat{B}^* = (X'X + kI)^{-1}X'Y$$

where k is chosen to satisfy the restraint (2.9). This is the ridge estimator.

To look at \hat{B}^* from the point of view of mean square error it is necessary to obtain an expression for $E(L_1^2(k))$.

$$E(L_1^2(k)) = E(\sum_j (\hat{\beta}_j^* - \beta_j)' (\hat{\beta}_j^* - \beta))$$

$$= \sum_j (\sigma_j^2 \sum_{i=1}^q \lambda_i / (\lambda_i + k)^2) + (\sum_j k^2 \beta_j' (X'X + kI)^{-2} \beta_j)$$

$$= \gamma_1(k) + \gamma_2(k)$$

where λ_i are the eigen-values of X'X.

Theorem (Existence Theorem). There always exists a k>0 such that

$$E(L_1^2(k)) < E(L_1^2(0)) = \sum_{j} (\sigma_j^2 \sum_{i=1}^q (1/\lambda_i))$$

Proof:
$$E[L_1^2(k)] = \sum_j [\sigma_j^2 \sum_i \lambda_i/(\lambda_i + k)^2] + \sum_j k^2 \beta_j' (X'X + kI)^{-2} \beta_j$$

 $\equiv \sum_j \gamma_{1j} + \sum_j \gamma_{2j}$

If Λ is the matrix of eigenvectors of X'X and p is the orthogonal transformation such that $X'X = P'\Lambda P$, then

$$\gamma_{2i}(k) = k^2 \sum_i \alpha_{ii}^2 / (\lambda_i + k)$$
, where $\alpha_i = P\beta_i$

$$\frac{d}{dk}E(L_1^2(k)) = \frac{d}{dk}\gamma_1(k) + \frac{d}{dk}\gamma_2(k)$$

$$= \sum_{i} (-2\sigma_{i}^{2}) \sum_{i} \lambda_{i} / (\lambda_{i} + k)^{3} + 2 k \sum_{i} \lambda_{i} \alpha_{ji} / (\lambda_{i} + k)^{3}$$

Let

$$E[L_{1j}^2(k)] = \gamma_{1j}(k) + \gamma_{2j}(k).$$

Then

$$E[L_1^2(k)] = \sum_i E[L_{1i}^2(k)].$$

It is known that

$$E[L_{1j}^2(k)] < E[L_{1j}^2(0)] = \sigma_j^2 \sum_i (1/\lambda_i)$$

for a $k < \sigma_j^2 / \max[\sigma_{j1}^2, \dots, \sigma_{jq}^2]$ and for each $j, j = 1, \dots, p$.

Hence

$$E[L_1^2(k)] = \sum_i E[L_{1i}^2(k)] < \sum_i E[L_{1i}^2(0)] = \sum_i [\sigma_i^2 \sum_i (1/\lambda_i)]$$

for a
$$k < \min\left[\frac{\alpha_1^2}{\max\left[\alpha_{11}^2, \cdots, \alpha_{1q}^2\right]}, \cdots, \frac{\alpha_p^2}{\max\left[\alpha_{p1}, \cdots, \alpha_{2q}^2\right]}\right]$$
.

3. Derivation of an explicit solution

The ridge regression estimators \hat{B}^* , for a fixed k > 0, satisfy

(3.1)
$$(X'X+kI)\hat{B}^* = X'Y$$

so that

(3.2)
$$\hat{B}^* = (X'X + kI)^{-1}X'Y$$

The general form of ridge regression reduces X'X to a diagonal matrix by applying an orthogonal transformation p.

We have that

$$P(X'X)P' = \Lambda$$

where P is a $q \times q$ orthogonal matrix and Λ is a diagonal matrix whose diagonal elements $\lambda_1, \dots, \lambda_q$ are the characteristic roots of X'X. If we write

$$X^* = XP'$$

and

$$A = PB$$

then the model (1.2) may be written as

64 統計學研究

$$Y=X*A+U$$

where $(X^*)'(X^*) = \Lambda$

The general ridge estimation procedure is then defined as

(3.3)
$$\hat{A}^* = [(X^*)'(X^*) + K]^{-1}(X^*)'Y$$
$$\equiv (\hat{\alpha}_1^*, \dots, \hat{\alpha}_n^*)$$

where K is a diagonal matrix with nonnegative diagonal elements k_1, \dots, k_q .

Optimal values for the k's in (3,3) can be considered to be those k_i 's that minimize

(3.4)
$$Q = E\left[\sum_{i=1}^{p} (\hat{\alpha}_{i}^{*} - \alpha_{i})'(\hat{\alpha}_{i}^{*} - \alpha_{i})\right]$$

With a certain amount of algebra, (3.4) may be expressed as

$$(3.5) Q = \sum_{i=1}^{p} \left[\sum_{i=1}^{q} (\sigma_j^2 \lambda_i + \alpha_{ji}^2 k_i) / (\lambda_i + k_i)^2 \right]$$

and differentiation of (3.5) with respect to the k's yields the minimization equations

(3.6)
$$\frac{\partial Q}{\partial k_i} = \sum_{j=1}^{p} 2\lambda_i (\lambda_i + k_i) (k_i \alpha_{ji}^2 - \sigma_j^2) / (\lambda_i + k_i)^4 = 0, \quad i = 1, \dots, q$$

$$\sum_{j=1}^{p} (k_i \alpha_{ji}^2 - \sigma_j^2) = 0.$$

From the full rank assumption on X'X we have that $\lambda_i > 0$ for all i. Restricting the k_i 's to be non-negative yields the solution

(3.7)
$$k_i = \sum_{j=1}^{b} \left[\sigma_j^2 / \left(\sum_{j} \alpha_j^2 \right) \right], \quad i = 1, \dots, q.$$

If the ridge estimation procedure is defined as $\hat{A}^* = [(X^*)'(X^*) + kI]^{-1}(X^*)'Y$, then the optimal value k that minimizes Q is

(3.8)
$$k = q \sum_{j} \sigma_{j}^{2} / \sum_{i} \sum_{j} \alpha_{ji}^{2}$$

In (3) the author suggests using an iterative procedure to estimate k_i . The procedure may be described by the formula

(3.9)
$$k_i(k) = \sum_{i=1}^{p} \sigma_j^2 / (\sum_i \alpha_{ji}^{2*}(k))^2, \quad i = 1, \dots, q$$

where the bracketed k subscript is used to denote the kth iteration. As initial values

we use

(3. 10)
$$\hat{a}_{ii(0)}^* = \hat{a}_{ii'} \quad i=1, \dots, q$$

where $\hat{\alpha}_{ji}$ is the ordinary least squares estimate of α_{ji} . The $k_i(k)$ values are used in equation (3, 3) in order to obtain the next $\hat{\alpha}_{ji(k+1)}^*$ values for use in (3, 9). Presumably, $\hat{\sigma}_j^2$ is the residual sum of squares for the model (1, 2) divided by (N-q), the ordinary least squares estimator for σ_j^2 .

Hemmerle (3) shows that an explicit solution is available for the limiting $\hat{a}_{i(k)}^*$ values so that it is not necessary to iterate in order to obtain these values.

It will be convenient to represent the p-vectors $(X^*)'y$ and $\alpha_i^*(k)$ as diagonal matrices. In this context let

$$B = diag(((X^*)'y)_1, \dots, ((X^*)'y)_p)$$

and

$$A_k = \operatorname{diag}(\alpha_{j_1(k)}, \dots, \alpha_{j_p(k)}).$$

As a consequence we have that

(3.11)
$$A = \Lambda^{-1}B$$
.

Furthemore

(3.12)
$$A_{k+1} = (\Lambda + \hat{\sigma}_{j}^{2} A^{-2})^{-1} \Lambda A_{0}$$

and

(3.13)
$$A_{k+1} = (I + \sigma_j^2 \Lambda^{-1} A_k^{-2})^{-1} A.$$

If we next let

$$(3.14) D = \Lambda/\hat{\sigma}_i^2$$

and we let

$$(3.15) E_{k} = D^{-1} A_{k}^{-2},$$

the iterative procedure is reduced to the simple formula

(3.16)
$$E_{k+1} = E_0 (I + E_k)^2$$
.

Let us assume that $\alpha_{ji}\neq 0$ for all i and that the iterative procedure is convergent such that

$$\lim_{k\to\infty} E_k = E^*.$$

From (3.16) and (3.17) we must have the relationship

(3.18)
$$E^* = E_0(I + E^*)^2$$

or

$$(3.19) (E^*)^2 + (2I - E_0^{-1})E^* + I = 0.$$

Now (3.19) consists of p equations of the form

$$(3.20) (e^*)^2 + (2-1/e_0)e^* + 1 = 0$$

where the e_0 and e^* are scalar. Solving (3.20) for e^* we obtain

(3.21)
$$e^* = [(1-2e_0) \pm (1-4e_0)]/2e_0.$$

Hemmerle shows that the kth iterative process defined by (3.22) converges whenever $0 < e_0 < \frac{1}{4}$ and diverges for $e_0 > \frac{1}{4}$. That is

$$(3.22) e_{k+1} = e_0(1+e_k)^2$$

Let

(3.23)
$$e_i^* = \lim_{k \to \infty} e_i(k), \ \hat{\alpha}_{ii}^* = \lim_{k \to \infty} \hat{\alpha}_{ii}^*(k)$$

where $e_{i(j)}$ denote the jth iterate of the ith equation.

Then since

$$(3.24) ei(k) = \hat{\sigma}_i^2 / \lambda_i (\hat{\alpha}_i^*(k))^2$$

we have that

(3. 25)
$$\hat{\alpha}_{ii}^*(k) \rightarrow 0 \text{ for } e_i(0) > \frac{1}{4}$$

whenever the procedure defined by (3.22) diverges for the ith equation. Thus we let

$$\hat{\alpha}_{ii}^* = 0$$
 for $e_i(0) > \frac{1}{4}$.

When the procedure converges for the ith equation we have that

(3. 26)
$$\hat{\alpha}_{ii}^* = \frac{[(X^*)'y]_i}{\lambda_i + \lambda_i e_i^*} = \frac{\hat{\alpha}_{ii}}{(1 + e_i^*)} \quad \text{for} \quad 0 < e_{i(0)} \le \frac{1}{4}$$

where e^* is evaluated using the formula (3.21).

4. Numerical Example

The data consist of

$$X = \begin{pmatrix} 3\sqrt{2}/10 & 4\sqrt{2}/10 \\ 4\sqrt{2}/10 & 3\sqrt{2}/10 \\ 5\sqrt{2}/10 & 5\sqrt{2}/10 \end{pmatrix}, Y = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 5 \end{pmatrix}.$$

After orthogonal reparametrization of these data, we obtain the following results.

$$X'X = \begin{pmatrix} 1 & 49/50 \\ 49/50 & 1 \end{pmatrix}, \ X'Y = \begin{pmatrix} 26\sqrt{2}/10 & 40\sqrt{2}/10 \\ 25\sqrt{2}/10 & 38\sqrt{2}/10 \end{pmatrix},$$
$$A = \begin{pmatrix} 85/33 & 130/33 \\ 5 & 10 \end{pmatrix}.$$

For this example we see that

$$\hat{\sigma}_{1}^{2} = y_{1}'y_{1} - \hat{\sigma}_{1}^{*}(X^{*})'y_{1} = 12/33$$

 $\hat{\sigma}_{2}^{2} = 75/33$

Consequently,

$$e_{11(0)} = \frac{12/33}{(51/10)(85/33)} = \frac{8}{289} < \frac{1}{4} \text{ and}$$

$$e_{21(0)} = \frac{12/33}{(1/10)(5)} = \frac{24}{33} > \frac{1}{4} \text{ for } y_1.$$

$$e_{12(0)} = \frac{75}{1014} > \frac{1}{4} \text{ and } e_{22(0)} = \frac{75}{60} > \frac{1}{4} \text{ for } y_2.$$

Similarly

Using the explicit method developed in the previous sections we evaluate e^* by formula (3.21) and obtain

$$e_{11}^* = 0.0293$$
 and $e_{12}^* = 0.0875$

Therefore

$$\hat{\alpha}_{11}^* = \frac{\hat{\alpha}_{11}}{(1+e_1^*)} = 2.502, \quad \hat{\alpha}_{12}^* = \frac{\hat{\alpha}_{12}}{(1+e_2^*)} = 3.623 \text{ and } \hat{\alpha}_{21}^* = \hat{\alpha}_{22}^* = 0.$$

We obtain k_1 and k_2 by formula (3.9), that is

$$k_1 = 0.9551$$
, $k_2 = 0.7278$.

The resulting solution is then given by

$$\hat{B}^* = \begin{pmatrix} 1.769 & 2.562 \\ 1.769 & 2.562 \end{pmatrix}$$
.

(Received January 1982; Revised September 1982)

REFERENCES

- (1) Anderson, T.W., (1956). "An introduction to multivariate statistical analysis," John Wiley and Sons, New York.
- (2) Donald, F. Morrison, (1976). "Multivariate statistical methods," McGraw-Hill, NewYork.
- (3) Hemmerle, W.J., (1975). "An explicit solution for generalized ridge regression," Technometrics, 17.
- (4) Hocking, P.R., (1976). "The analysis and selection of variables in linear regression." Biometrics, 32.
- (5) Hoerl, A.E. and Kennard, R.W., (1970). "Ridge regression: Biased estimation for non-orthogonal problems," Technometrics, 12.
- (6) Kennard, R.W., (1971). "A note on the C_s -statistics," Technometrics, 13.
- (7) Mallows, C.L., (1973). "Some comments on C_{ρ} ," Technometrics, 15.
- (8) S. James Press., (1977). "Applied multivariate analysis," Holt, New York.