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ABSTRACT

We propose that, in order to control the inflation and general instability associated with the least

squares estimates, we can use the ridge estimator
Br*=(X'X+kD)'X'Y : k20

for the regression coefficients B in multivariate regression. Our hope is that by accepting some
bias, we can achieve a larger reduction in variance. We show that such a k always exists and

we derive the formula obtaining k in multivariate ridge regression.
1. Introduction

Let v, ---,¥» be Nx1 vectors representing N independent observations on each of p
correlated dependent random variables.

Assume the linear model

(1.1 yi=XBi+us, j=1,+0,
where X is an (Vx¢) matrix of known form and may be thought of as arising either as
a “functional” or a conditional” regressor matrix; 3; is a (gx1) vector of parameters;
#, is a (Nx1) vector of errors and E(u;)=0, Var(u,)=1Is? so the elements of u; are
uncorrelated. For a given j, (1.1) is a univariate regression.

The basic model equation may be written in a more compact form in the following

way. Define
Yz(yh "'ayf’)y Uz(ula °ty u!’), BE(.BI, ) [BP)
Then (1.1) becomes

(1.2 Vy = X B + U
(Nxp) (Nxg) (gxp) (Nxp)
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To define the multivariate regression model completely, impose the following assump-

tions and constraints on the quantities in (1.2)

a.3 p+q<N

a.4 rank(X)=gq

Define the rows of U by

U=y, -, v8)’

where v, is a (px1) vector, j=1,---, V.

(1.5 E@w)=0, Var(w)=X=(:;) and X >0 (positive definite).

An alternative form of this assumption, which is obtained by stringing out the columns
of U into a long Npx1 vector #, where u'=(u,’,---, 4,'). Then

(1.6) Ew)=0, Var()=FT RIy (Q is the direct product)

Qa.7n L wH=N(, ), j=1,+-, N. (£ means probability law).

2. Multivariate Ridge Regression

From the notation and assumptions we know that
B=(X'X)'X'Y

as an estimate of B and this gives the total minimum sum of squares of the residuals:
~ P a~ a
¢(B):§l(yi—Xl3:')' (3:—XB)

where X is Nxg matrix of the known independent variables.
@n Var(H)=Z@X'X)™!
VVheI'e B'E(Bl', b 59,)
L 2 A
(2.2) Li=3:=6)" (Bi=8)

where L, is distance from B to B.
(2.3 E(LY) = 3 Te(X' X)o7

If the eigenvalues of X’'X are denoted by
(2. 4) zmax:212°"22p:2min> 0,
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then the average value of the squared distance from B to B is given by

@5 EQLY) = £ 03 (5a/a)

and the variance when the error is normally distributed is given by

@.6) Var(L) = % @oi(5 /209

Hence, if the shape of the factor space is such that reasonable data collection results

in an X'X with one or more small eigenvalues, the distance from B to B will tend to

be large. In order to control the inflation and general instability associated with the least

squares estimators, we might use a ridge estimator,

@7 B* = (X'X + ED'X'Y : E>0

in multivariate regression.
The relationship of a ridge estimate to an ordinary estimate is given by the alternative

form

2.8) B* = (X'X + kD' X'Y

=(X'X + kD"'X'XB

= + KX'X)") B

=ZB

Let B be any estimate of the vector B. Then the residual sum of sruares can be

written as

o = 1(J’i‘X5i)'(J’i—X5i>

b

M~

(i—XBD" (i—XB) +§1(BJ—B:’)’X’X(Bi_‘Bi)

M-~

= ¢min + ¢(B)

The ridge regression coefficient matrix B* is the single value of B which is the one

with minimum length for a fixed ¢.
This can be stated precisely as follows:
Minimize ZB,"B,‘

@.9 subject to Z’_(Bi“"‘éi)lX/XCBi_Bi>: ®o
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As a Lagrangian problem this is
minimize F= %_35,.'5,.+(1/k>(>;(5,—@)'}(’){(@—69—%)
where (1/k) is the multiplier.

Then

2L 28+ DX OB~2X XOB)=0, = 1w 1.

This reduces to
Bi = B* = (X'X+ED ' X'y, j = 1, b.

That is,
B =pB*= XX+ ED'X'Y

where £ is chosen to satisfy the restraint (2.9). This is the ridge estimator.

To look at B* from the point of view of mean square error it is necessary to obtain an

expression for E(L2(k)).
E(L:(k»:E(;(B;*—ﬁo' Br—H)

=3 (d} 21 2/ Qe R+ (SR X+ kD26,

=711(R) +7.(R)

where A are the eigen-values of X'X.
Theorem(Existence Theorem). There always exists a £>( such that

E(L1() <ELI0) =T (s} £01/2)

Proof : E[L{(B)]=X[0} ¥ z/(x 1R 143 BEXCXA RIS,

=3n *ZT%
If A is the matrix of eigenvectors of X’X and p is the orthogonal transformation such

that X' X =P'AP, then
72:,(R) = kZZa,,/(A +k), where a;,=Pg;

S L= 1, + )
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= Z(_20€>Z li/(/li+k)3+ 2 kzziaji/(zi‘}‘k)s

Let E[L:(R)]=711,(R) +72,(R).
Then E[L{(R]1=X E[L},(B)].
It is known that

ELLL,(B]<ELLL(0)]=0f Z(1/2)

for a k<¢?/max[o?, -, 0%] and for each j, j=1,---,p.

Hence
E[L:(B)]= ; E[ij(k)] <§E[L%j(0>J = ; [of £(1/2)]

al a;

max[ain"" a:q] ’ ’ max[aﬂy"'y ai!] Jr

for a k<min[

3. Derivation of an explicit solution

The ridge regression estimators f?*, for a fixed k>0, satisfy

B.1D (X' X+EDB*=X'Y
so that
3.2 B*=(X'X+kD)'X'Y

The general form of ridge regression reduces X'X to a diagonal matrix by applying
an orthogonal transformation p.

We have that

PX'XH)P' =4
where P is a ¢x g orthogonal matrix and A is a diagonal matrix whose diagonal elements
A1, -+« A, are the characteristic roots of X'X. If we write

Xe=XP’
and

A=PB

then the model (1.2) may be written as
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Y=X*A+U
where (X*)'(X*)=4
The general ridge estimation procedure is then defined as
(3.3) Ar=[(X9) (X% + K17\(X*)' Y
=(af, -, a})
where K is a diagonal matrix with nonnegative diagonal elements &, -, k.

Optimal values for the £’s in (3.3) can be considered to be those 4;'s that minimize

Ed -~
.0 Q=E[ L (&1 —a) (& —a)]
‘With a certain amount of algebra, (3.4) may be expressed as

q

3.5 Q=503 (03+ a2k /(L + R

i=1 i=

-

and differentiation of (3.5) with respect to the %'s yields the minimization equations

3.6) T = E2A k) ik —0D /b R)'=0,, i=1,00g

3 (ki 02— 03 =0,
1

Ji=

From the full rank assumption on X'X we have that 1,>>0 for all i. Restricting the

ki’s to be non-negative yields the soclution
@7 h=3[0%/(Sad)], i=1,-,4.

If the ridge estimation procedure is defined as A*=[(X*) (X*)+kI]"1(X*)'Y, then

the optimal value % that minimizes @ is
3.8 k=q Zoi/5 ¥ ai

In (3) the author suggests using an iterative procedure to estimate k,. The procedure

may be described by the formula
i
3.9 k(B)=3% ai/(E ol (R i=1,-q

where the bracketed %2 subscript is used to denote the kth iteration. As initial values
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we use
(3.10) afoy = @' 1=1,,¢
where @&, is the ordinary least squares estimate of ;. The k(&) values are used in
equation (3.3) in order to obtain the next &, values for use in (3.9). Presumably,

#? is the residual sum of squares for the model (1.2) divided by (N—g), the ordinary

least squares estimator for o%,

Hemmerle (3) shows that an explicit solution is available for the limiting &, values
so that it is not necessary to iterate in order to obtain these values.

It will be convenient to represent the p-vectors (X*)'y and af(k) as diagonal ma-

“ trices. In this context let
B=diag(((X*)'»)y, -+, ((X*)'3),)
and
Ar=diag(aicr, ) Liver).

As a consequence we have that

3.1D A=A"'B.

Furthemore

.12 A =(A+52A7D A,
and

G.13 Apn=I+02 4 AT A

If we next let

(3.1 D=4/5%
and we let
(3.15) E.=D'A3

the iterative procedure is reduced to the simple formula

(3.16) Ew =E(I+ED

Let us assume that a,;;#0 for all { and that the iterative procedure is convergent such
that

.17 llirg E.=E*
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From (3.16) and (3.17) we must have the relationship
(3.18) Ex=E I+ E*)*
or
3.19 (E*)+(2]-EDHE*+I=0.
Now (3.19) consists of p equations of the form
(3.20) (€ )*+(2—1/e0)e* +1=0
where the ¢, and ¢* are scalar. Solving (3.20) for ¢* we obtain
(3.2D e*=[(1-2e0)(1—4¢0)]/2¢,.

Hemmerle shows that the kth iterative process defined by (3.22) converges whenever

O<eo<% and diverges for e,> -} That is
(3.22) Cisr=0(1+ex)?
Let
(3.23) eleifg e:(k), &;ﬁz}zi}g ar(k)

where e, denote the jth iterate of the ith equation.

Then since
(3.29) e:(k) =63/ 2:(aj;(k))?
we have that
(3.25) &t()—0 for e(0)>1
whenever the procedure defined by (3.22) diverges for the ith equation. Thus we let
ai=0 for ej(0)>%.

When the procedure converges for the ith equation we have that

(3. 26) ape LCXOD] G g 0<eiw=
2:‘4‘2;6,* <1+e,*)

where e* is evaluated using the formula (3, 21).
4. Numerical Example

The data consist of
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3V2/10 4472/10 11
X=|442/10 3v2/10|, Y=|2 3
542/10  5472/10 3 5

After orthogonal reparametrization of these data, we obtain the following results.

1 49/50 267 2/10 4042 /10
X'X:[ ] x Y:[ ]
49/50 1 254/2/10 384/72/10
[85/33 130/33]
5 10 /)

For this example we see that

Gi=y0—0F(X*)'y,=12/33

G3=75/33

Consequently,
fro= (51/15/?35/33) =55 < and
emo):—u%/)%:%>—i— for .

Similarly e,g(o):—i%%‘>% and e22<0)=—’£8—>% for y,.

Using the explicit method developed in the previous sections we evaluate e* by formula
(3.21) and obtain
e}=0.0293 and e},=0. 0875
Therefore
T —2.502, ah=—22 3623 and Gh=ah—0.
(1+e¥) (1+ed

N
%
Q=

We obtain &, and %, by formula (3.9), that is
k=0.9551, ky=0.7278.

The resulting solution is then given by
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