Comparison of Several Populations with a Control

Involving Folded Normal Distributions

Seung-Ho Lee* & Kang Sup Lee**

ABSTRACT

The problem of comparing # normal populations with a control (or a standard) in terms of the
absolute values of their means is considered. Under the framework of indifference-zone formulation
a single-stage and a two-stage procedures for selecting the best are proposed, according to their
common variances known or unknown respectively. The procedures guarantee that the probability
of correct selection is not less than some preassigned lower limit. Selected tables necessary to

implement the procedures are provided.

1. Introduction

Suppose that we have k+1 different procedures for computing a value of some
particular function. And let X: be the error resulted by i-th method, which is assumed
to follow a normal distribution with mean g and common variance ¢?, =0,1,--, k. We
want to identify the one that consistently gives better accuracy in the results. In this
case, we are interested in the bias that is observed by the absolute value of error. In

other words, we are interested in comparing the quantity,
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where @(-) is the c.d.f. of standard normal random variable, or equivalently in compar-
ing |u|. Hence our goal is to select the population with the smallest value of |l

A procedure for selecting the ¢ best normal populations in terms of |u;| was proposed
by Rizvi (1971). Motivations for considering such a quantity can be found also in Rizvi
(1971) and Gibbons, Olkin and Sobel (1977). In this paper we are concerned with the
problem of selecting one from £+1 independent normal populations o, Iy, +++, s as the
best, where the population Z, plays a special role as a control (or a standard) under
the framework of the indifference-zone formulation. For a detailed exposition of this
formulation, see Bechhofer(1954).

The criterion of selecting a population is minimizing the bias or absolute mean. Proced-
ures for selecting the best population are proposed, which guarantee that (i) with probability
at least a given P, none of the new populations is selected (i.e., to select the standard
II,) when the smallest absolute population mean is sufficiently larger than that of the
standard, and (ii) with probability at least a given P¥ the population having the smallest
absolute mean is to be selected when this mean is sufficiently smaller than its closest
competitor’s and the standard’s in absolute value,

In Section 2, we propose a single-stage procedure for the case of known common
variance, and in Section 3, a two-stage procedure for the case of unknown common
variance. Selected tables necessary to implement the procedures are provided in each case,

Bechhofer and Turnbull (1978) considered the similar problem of selecting the best one
from k£+1 normal populations in terms of Ui, where a standard is comletely specified

in terms of y,.

2. The Procedure when ¢ is known

Suppose we have k independent normal populations with known common variance g2 -
I:: N, 6, i=1, -, k
and a specified standard population I, : N(uo, 6%) up to which Jl.’s are to be compared.
Let the ordered values of parameters, 6;=|u:|, i=1,, k, be denoted by
0001, Oyl ZOay

1t is assumed that there is no a priori information available about how many or which
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(if any) populations have 6; smaller than 8,= | x|

Our goal is to select the population associated with #;,, provided that 6, is sufficiently
smaller than 6, and 8, or to select none if #;,>6, Such a selection is regarded as a
correct selection (CS). And let §=(0us, O, o, fcy) denote a point in the parameter

space Q, which is partitioned tnto a “preference-zone” Q, and Q,(6*) defined by

Qo= 16" Oc13 =204} (2.1.a)
and
Q.(0%)= {_l? D0y by—0%0, 0:1<<0is—0%0} (2.1.b)

respectively, and its complement called “indifference-zone”. The quantity 9*(>0) is a
prespecified value by experimenter, and is called the “separation threshhold”. In addition
to specifying o*, the experimenter also specifies two probability constants P¥ and Pf,
and then he is seeking for a procedure R, which satisfies

Po(select 1,)=>P¢ if 9eQ, (2.2.a)

and
Py(select I ,)=PF it e Q%) (2.2.b)

where T, is the population with parameter 6.

The constants 1— P¥ and 1—Pf§ might be considered as roughly analogous to the
probabilities of type 1 and type I errors in the Neyman-Pearson framework of testing
hypotheses. However, since our problem is of a multiple decision type, it is not equivalent
to testing hypotheses proplem unless k=1. Note that Pf and P} are specified as being
strictly greater than (k+1)-1, since this latter probability can be achieved by selecting
any population without taking any observations.

We propose a procedure K, as below:

Take # independent observations Xi; (j=1, ++, #) from each /I; (i=1, ---, k). Compute
| Xl = I,;‘j Xi;/n| and let 0< I X | el | X | cay<e++<< | X | sy denote the order statistics of the
i=1

]Xi!, izly'"’ k.

Then our selection rule R; decides to

select [Ty, if | X |21 Xl —d jﬁ (2.3.2)
and
select Mep, if 1X | <| X0l —d—F=, (2.3.b)

where My, is the population associated with X |1y, i.e., the population with the smallest
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sample absolute mean, and 4 is a nonnegative constant.

The selection procedure R, is completely defined once the values of the design constants
(n,d) are assigned; » is the smallest sample size which will guarantee (2.2.a) and
(2.2.b) with an appropriate d.

The procedure R, is based on the absolute value of the sample mean. Let W;= %X
|X.! denote a typical statistic equivalent to the absolute value of the sample mean, and

v

let E;:%b’;z p {:]. Then W; has the “folded normal” distribution with folding

at the origin, and its cumulative distribution function is

F(w, Ei):P(—‘%z—lX-Igw) 2.4.2)
=@<w~— «/07 ,u;)—(b(—w— \/0_7 /li)

= (w— \;7 |,u,-l>—(b(—w— 2 |ﬂi|>

a

=0(w—£)—0(—w—£&), w>0
and its probability density function is

fw, E)=¢w—E)+d¢(w+E&), w>0 (2.4.b)

where ©(-) and ¢(-) are the c.d.f. and p.d.f. of the standard normal random variable,

respectively.
Lemma 1 :
)
Sw, & (2.5

is increasing in wé, where 1?‘ (w, E):%F (w, &),
Proof : — 0, )/ f(w, &)= (=) — P+ [$(w—) + 6 (w &)}
=tanh(w¢), increasing in wé&.
For feQo= {Q:ﬁEuZﬁo} = {§ :€uy=&ol, the probability of correct selection by the

procedure R, is given by

Po(CS) =Py | X |ty | K| —d—2—) (2.6.2)
:Pg_‘f.I/Voéd)+Pg.<WmZW/o_‘dv Wo>d)
ook
=F(d,&) + || T (1= F(wd, £))Aw, é)duw,

and fOI‘_ﬁEQl: {193(9[1]§50~5*0‘. 19m§0123—5*0'} = {E:§c13§50—5, EE1)£€E2]_57 d= \/72 5*},
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4

PQ_(CS>:PQ(IXMU<1X0‘“C{ NIl |X|(1):JXIEU) (Z-G-b)
:D3<W7511<W0‘d, Wa,= W)

o k
={"0-FGo+d, 90 I (1-Fw, £)3 dFGw, €.
where | X |, W, denote the sample mean from the population associated with 6y,.
To satisfy the requirements (2.2.a) and (2.2.b), we need to find the infima of these

probabilities and also # for which these infima attained; these § will be called the “least

favorable configurations” (LFC) of the parameters.
Lemma 2 : 1) =Fd, &+ (1—Flw—d, 91" fQw, Odu (2.7.2)
is a nonincreasing function of & and
&= (1 FQu+d, 6 +0))01~Flw, § +5)1-dF(w, &) (2.7.b)
is a nondecreasing function of &,

Proof : Using integration by parts and Lemma 1,
4 1=k o+ r1-Fu—d o (- Be—d, )] faw, Hdw

+{Tn-Fae—d, 01" Fw, &dw (2.8.2)

:ij[l—F(w—d, -1 w—d, &) flw, &)

_Pw—d, &) —Fad
{f(ZLv~d,§) fw, &) }duéo

and

A J©= [ k=D =F 402 Fluwtd, §+9))

(—Ew, §+8)) fQw, )dw (2.8.b)

{70 Fau g+ 1 L= Flwtd, 6481w, ©)dw

4]

0

+-Sw[1—F(w+d,s+5)][17F(w,£+5)]’*-1 Fw, dw

"(1—Fw, £+ 8141 fw+d, £+6) f(w, 8

0

Fw+d, & 6) T w8
“Ch—1)01— Faw, &4 )11~ F(w+d, £ +8))

0

{;_°<w+d,s+5>__ —F(w, © la
o
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Theorem 1 : Given §*, P¥ and P}, the design constants (n,d) of the procedure R, which

guarantee(2. 2.a) and (2.2,b) are determined by the following simultaneous equations:

(" t-ou-aygwa=py (2.9.2)
2f (=0t +d—8) + 0(—t—d—3)I1— DU —0) + B(—t —5)]*1x
$(tydt= P¥ (2.9.b)
n=[(3/3%)1+1 (2.9.0)
where (x] denotes the largest integer less than or equal to x.

Proof : For feQq, LFC is &=&c,=+=£q, ; hence
Po(CS)=F(d, e+ (" TI01~Flw—d, £ f(w, o)dw

= F(d, e+ (1= Fwv—d, 83t faw, &)duw. (2.10)

Therfore it follows from Lemma 2 that

inf Pu(CS)=inf (F(d, &)+ [ (1~ F(w—d, §) 1w, &) duw)

=lim I(&,) for 1(§) given in (2.7.a).
fomeo
“Thus,
inf Py(CS) = lim (T-0@w—d-&)+ 0(~w+d—E) T gw—2)dw

+-0w—d~2) + 0(—w+d—£) g+ £ du)

=lim || (1-00~d)+0(~1+d—28) gDl

+lim Sje (=0 —d—28)+B(—L+d)I*¢(D)dt

=" a-eu-mrewar. (21D
similarly, for §eQ, LFC is & =&, +d=8 ==& .

PyCE)= ["(1= FGw+d () TT (1~ Fw, £)1dFw, &)

i>S:[1—F(w+ d, & +)I1—F(w, &+ dF(w, &)
(2.12)
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It follows from Lemma 2 that

inf Po(CS)=inf(; (1~ FQw+d, & +8)1(1—Fw, &+ ) 1dFw, &)

0ely

=lim J(&)

£1-0
Thus,

inf Py(CS)=| 11 ~F@w+d,HIN—Fw, 0 'dFw,0)  (2.13)

.
:5:[1vq>(w+d—5>+q>(~w—d4)] (1—0w—0)
+0(—w—) )W) +¢(—w) )dw
=2 (=0 +d—0) +O(~t~d ~0)I(1~0¢~D)
LO(—t—8))4 g()dt

From these two infima probabilities and the relationship §= v 7 0%, the results follow.

Values of (3,d) for k=2(1)5 and selected (P¥, P¥) are given in Table B, while Table

A gives values of (P¥, PP for k=2, 3, 5, 10 and selected (4, d). Computer programs to
solve (2.9.2) and (2.9.b) have been prepared using 32 point Gauss-Laguerre quadrature
formular, which is available upon request.

It should be noted that, the left side of (2.9.a) is increasing in d, and the left side
of (2.9.b) is decreasing in d and increasing in 6. It should be also noted that, by
setting d=0 and n=0 (and hence 5=0) in the left side of (2.9.a) and (2.9.b), we
obtain (£+1)"%, the probability that can be achieved by randomly selecting a population
without taking any obrervations.

As an example for using Table B, suppose that we are interested in selecting one
from the three alternative measuring instruments if it is superior in accuracy to the
others and the standard instrument. Suppose that the measurements are known to follow
normal distributions with different means but with a common variance g2=100. Also, let
P*=0,90, P¥=0.90 and 9*=1 be specified. Then from Table B for k=4, 0=4.91230
and d=2.59970 and hence n=[(8/5%)*)+1=(24. 13071 +1=25.

Thus we need 25 observations from each population and select the one that gives the
smallest absolute sample mean if the value is less than that of the standard minus

2 50970 —0__ _5.1994, and none otherwise.

V25
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Table A-1. Values of P,* given by (2.9.a)
7 2 3 5 10
0.0 0. 333333 0. 250000 0. 166667 0. 090909
0.5 0. 482593 0. 393318 0. 292527 0. 185216
1.0 0. 633702 0. 552031 0. 449365 0. 323202
L5 0. 765812 0. 701863 0. 613555 0. 490115
2.0 0. 865767 0. 822793 0. 758452 0. 657630
3.0 0. 968795 0. 956374 0. 935305 0. 895580
4.0 0. 995496 0. 993470 0. 989742 0. 981740
5.0 0. 999599 0.999407 0. 999037 0.998176
6.0 0.999978 0.999967 0. 999946 0. 999894
7.0 0. 999999 0. 999999 0. 999998 0. 999996
Table A-2, Values of P,* given by(2.9.b) for k=2
a2 0o 0.5 1.0 2.0 3.0 5.0 7.0
0.0 | 0.333333  0.367067  0.466021  0.755655  0.938738  0.999198  0.999999
0.5 | 0.182946  0.218094  0.323456  0.657017  0.900407  0.998156  0.999995
1.0 | 0.083697  0.111639  0.199583  0.525458  0.829833  0.994979  0.999977
2.0 | 0.009620  0.017484  0.047539  0.233124  0.569210  0.966147  0.999592
3.0 | 0.000469  0.001256  0.005310  0.054622  0.242507  0.848768  0.995327
5.0 | 0.000000  0.000000  0.000005  0.000279  0.006160  0.249994  0.848886
7.0 | 0.000000  0.000000  0.000000  0.000000  0.000005  0.006186  0.250000
for k=3
Y 0.5 1.0 2.0 3.0 5.0 7.0
0.0 | 0.249999  0.278139  0.367404  0.680899  0.914466  0.998815  0.999998
0.5 | 0.140783  0.168949  0.250613  0.507644  0.879187  0.997791  0.999994
10 | 0.065954  0.088355  0.163367  0.433113  0.812691  0.994637  0.999976
2.0 | 0.007892  0.014385  0.040403  0.218780  0.561045  0.965905  0.999592
3.0 | 0.000397  0.001067  0.004652  0.052085  0.245299  0.848650  0.995327
5.0 | 0.000000  0.000000  0.000004  0.000271  0.006134  0.249988  0.848886
7.0 | 0.000000  0.000000  0.000000  0.000000  0.000005  0.006186  0.250000
for k= 5
=21 oo 0.5 1.0 2.0 3.0 5.0 7.0
0.0 | 0.166666  0.187079  0.257339  0.573140  0.873460  0.998075  0.999996
0.5 | 0.096488  0.116422  0.185818  0.509515  0.842730  0.997077  0.999993
1.0 | 0.046420  0.062385  0.119636  0.418243  0.782665  0.993974  0.999975
2.0 | 0.005825  0.010639  0.031037  0.195420  0.546167  0.965430 . 0.999591
3.0 | 0.000304  0.000821  0.003731  0.047745  0.240973  0.848417  0.995326
5.0 | 0.000000  0.000000  0.000004  0.000256  0.006085  0.249975  0.848886
7.0 | 0.000000  0.000000  0.000000  0.000000  0.000005  0.006186  0.250000
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for k=10

T2 oo 0.5 1.0 2.0 3.0 5.0 7.0

0.0 0. 090908 0. 102674 0.146127 0.417010 0. 796810 0.996353 0. 999993
0.5 0. 054087 0. 065462 0. 107686 0. 377065 0.772991 0, 995410 0. 999989
1.0 0. 026746 0. 035981 0. 071304 0. 316502 0. 723571 0.992414 0.999972
2.0 0. 003536 0. 006460 0. 019661 0. 155435 0. 514990 0. 964254 0. 999587
3.0 0. 000194 0. 000524 0. 002497 0.039715 0. 231385 0. 847848 0. 995324
5.0 0. 000000 0. 000000 0. 000003 0. 000227 0. 005967 0. 249945 0. 848886
7.0 0. 000000 0. 000000 0. 000000 0. 000000 0. 000005 0. 006185 0. 250000

Table B. Values for the design constants(d,d) in the procedure R, for selected(P*, P*)

P?
0.5 0.75 0. 80 0.90 0.95 0.99
Pt
0.90| d 3.02037 3. 80571 4.00579 4.54273 4. 99697 5. 87283
d 2.23020 2. 23020 2.23020 2.23020 2.23020 2.23020
k=2 0.95| 0 3.48724 4.27926 4. 48043 5.01945 5. 47480 6. 36186
d 2.71010 2.71010 2.71010 2.71010 2.71010 2.71010
0.99 | 0 4. 38850 5. 18411 5. 38577 5. 92565 6. 38141 7.25885
d 3.61730 3.61730 3.61730 3.61730 3.61730 3.61730
0.90| & 3.24529 4. 02809 4.22788 4.75433 5. 21839 6.09414
d 2.45157 2. 45157 2.45157 2. 45157 2.45157 2.45157
k=3 0.95| d 3.69444 4. 48564 4. 68673 5. 22562 6. 68093 6. 55797
d 2.91623 2.91623 2.91623 2.91623 2.91623 2.91623
0.99| & 4.56824 5. 36379 5. 56544 6.15532 6. 56107 7.43851
d 3.79696 3. 79696 3. 79696 3. 79696 3.79696 3.79696
0.90| 6 3.39433 4.17622 4.37593 4.91230 5. 36636 6. 24217
d 2.39970 2.59970 2.59970 2.59970 2.59970 2.59970
k=4 0.95| ¢ 3.83359 4. 62456 4. 82563 5. 36452 5. 81984 6. 69689
d 3.05517 3.05517 3.05517 3.05517 3.05517 3.05517
0.99| & 4.69087 5. 48641 5. 68806 6. 22794 6. 68370 7.56113
d 3.91958 3.91958 3.91958 3.91958 3.91958 3.91958
0.90| 9 3.50474 4. 28625 4. 48595 5.02235 5. 47644 6. 35233
d 2.70995 2.70995 2.70995 2.70995 2.70995 2.70995
k=5 0.95| 9 3.93750 4.72840 4.92948 5. 46838 5.92372 6. 80080
d 3.15909 3.15909 3.15909 3.15909 3. 15909 3. 15909
0.99| J 4.78336 5.57891 5. 78056 6. 32044 6. 77620 7.65363
d 4.01208 4.01208 4.01208 4.01208 4.01208 4.01208

3. The procedure ¢* is unknown

When ¢ is not known, the preference-zone Q;(¢*) given in (2.1.b) is not completely
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determined, and hence it must be modified. Thus we define a “preference-zone” Q¥ and
QF(*) as follows:

Qi=1{0,0) : 0c;,>6,}

3.1.a)
Q¥o= {(6.0) ; 6cy<<0,—0%, Oc1y <o, — 5%} 3.1.b)
where ,0c, and 3* are the same as those in Section 2.
Our goal is to find a selection procedure which guararntees;
Po,oy fselect 1T,} > Pg, if (6,0)eQ¢ (3.2.2)
Po,sy {select T} > P, if (6,0)eQF (3.2.b)
for the specified probability bounds P§ and Pf, We propose a two-stage procedure R,
as below;
(a) In the first stage, take 1,(>>2) independent observations X;,
(j=1, -, #n,.) from each I, (t=0,1, -, k) and compute
k ny —
st= Z:l ; (X,*,-*/Y,')z/y, v=k(#,—1) G.3

which is an unbiased estimate of ¢® based on v=k(n,—1) degrees of freedom.

(b) In the second stage, take n—n, indepencent observations from each
I; i=0,1,2, -, k

where n=max {n,, [(cs/5*)2]+1} 3.4

and compute the overall (first stage plus second stage) ahsolute values of the sample
means

IX']:LZ: X{j/n], Z.:O, 17 ot k

and let 0] X |, < | X | gy <Ceee <

| X |css denote the order statistics of X, i=1,

v, k.
© Stlect 77,

if 1 X[y | X, ~d f; (3.5.2)
and

Select 5, if | X |, <|X,|—d S

T (3.5.b)
For the selection procedure R, to he defined, the design constants #,, # and 4 should

be assigned. The choice of the initial sample size #, is optional, though some guidelines

to assist in this choice are discussed at the end of this section. For a chosen #,, = is
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completely determined in terms of ¢, and hence the design constants(#, d), or equivalently
(c,d) depend on k, 1, and the specified quantities (3%, P¥, P¥). Theorem 2 tells how to
determine (c,d) so as to guarantee(3.2.a) and (3.2.b).

Let I’V,-:—%Z—Z——I)T’.-] and &= “/l? #: as in Section 2, then the selection rule R, can
be represented in terms of W; as follows;

Select H,, if Wy >W,—du (3.6.2)
and

Select T¢yy,if Wiy <W,—du, where u=s/o (3.6.h)

and the preference-zore Q#(0*), in terms of & ;

Qf@=1{: €y <& —0, i< —0} 3.7

where d= % d*/0.
Note that » and W, are independent.

Theorem 2 : Given §, P¥ and P}, the design constants (c,d) of the procedure R,

which guarantee (3.2.a) (3.2.b) are the pair satisfying the simultaneous equattons;
(" a—et—udrewat g.(=ud Pf (3.8.2)

ZS: S:[1~<D(t+ud—uc) +&(—t—ud —uc)I(1— O —uc)

L O(—t—uc)1*-1¢(Ddt q.(uyud=P¥ (3.8.b)
where ¢,() is the density of « y.2/v,, v=k(,—1D.
Proof: When(f, o) ¢QJ. LFC is &=¢&,=---=§&: and hence by Lemma 2,
P.05(CS)=Ps,0) (Wi, = Wo—ud) 3.9

={CF@d, &+ (7 110 - Fw—ud, £)1dFw, €9 ¢.w)du

lim {7 1F(ud, 60 + | (1= FQu—ud, )2/ (w, &) duw)
q.(w)du
=" (o —ud¢dta.Godu.
Similarly, when(§,0)eQ¥, LFC is &==E&c;+8=&p="+=&u and by Lemma 2,
Pio.sy=Poao(Wey <Wo—ud, W= Way) G.10)

:S:S:EI—F(w+ud, £0)) :T_Iz (1—F(w, £)1dF w, &) -q.(w)du
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>lim ("] 01~ Fo--ud, ,+8)71dF (1w, £)q. ()

F10
=2 ("(1—0(t+ud—5) +0(—t~ud—3)I(1 -0 —5)
+O(—1=3))*1¢(Ddt-q.(u)du.
Since #> (cs/8%)%, 0= v 7 o*/o>uc
and the above integral (3.10) is increasing in 8. Thus the infimum of P, (CS) occurs

when d=cu, i.e.,
inf P, (C9)=2{ (" (10 +ud—uc) +0(—t—ud—uc)) (3. 11)

(=0 —uc) +O(—t—uc)I*-¢@dt q.(w)du.
From the two infima probabilities (3.9) and (3. 11), the results follow.

It should be noted that, if y-—oo, then u—1 by the “Strong law of large numbers” and
hence the double integrals (3.8.a) and (3.8.b) are reduced to (2.9.a) and (2.9.b) in
theorem 1, respectively. This means that when the degrees of freedom for estimating o2
is sufficiently large, the value of the design constants (¢,d) in the unknown variance
case are nearly the same as the (4,d) of the known variance case.

Table C gives the solution (¢, d) of (3.8.a) and (3.8.b) for k=2(1)5 and selected v,

P¥ and P¥. The tabulated values of ¢ (upper entry) and d (lower entry) are calculated

to an accuracy of £107% in the associated values of (P¥, P¥) using 24 point Gaussian-
Lagurre and Gaussian-Hermite quadratures, both in the IBM scientific subroutine
package.

As an example for using the Table C, suppose that we have k=4 populations and
specify 6*=1, PF=0.90, P¥=0.75. And suppose that we take #,=11 observations from
each populations and obtain s2=16 with 40 degrees of freedom. Then from Table C we
have (c, d);(4, 62953, 2. 66130) and (cs/0*)*=342. 9208, Hence we need 332 observations

more from each populations and select the one that gives the smallest absolute sample mean
4

if the value is less than |X,|—2.66130 NETER

Although the initial sample size #, of the procedure R, is optional,some guidelines to

assist in this choice can be suggested.

Follwing Stein (1945),
N=max {n,, [(cs/6*)2)+1}

is a random variable with expectation
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ECNT =y POEEnD) + 5 P> naod) +aP (> mavd)

where A=(d*/¢)?/o® and 0 <a <l

If the experimenter has some idea as to the possible values of o, Bechhoffer and
Turnbull (1978) proposed that #, would be chosen to minimize the maximum expected
loss in number of extra cbservations needed due to ignorance of ¢. As an alternative to
the minimax regret criterion, #, could be chosen so as to minimize the expected loss in
number with respect to an appropriate prior distribution of o, The results of Moshman

(1958) and Wormleighton (1960) can also be extended to our problem.

Table C. Values for the design constants (¢, d) in the procedure R; for selected (P}, P})

P¥=0.90 0. 90 0.95 0.95 0.99 0.99

g P¥=0.75 0.90 0.75 0.90 0.75 0.90

10 ¢ 4.50068 6. 66578 5.10692 7. 26895 6. 46304 8. 62159

d 2.42301 2.42301 3.04143 3.04143 4. 40493 4. 40493

k=2 20,c¢ 4.32475 6.15470 4. 86077 6. 69329 5. 96760 7.80130
d 2.32281 2. 32281 2. 86706 2, 86786 3.97794 3.97794

40| ¢ 4.24179 5. 92949 4.74633 6. 43765 5.74715 7.44012

d 2.27559 2.27559 2.78652 2.78652 3.79004 3.79004

15 lc 4.63346 6. 56740 5.18503 7.12015 6. 36735 8. 30256

k=3 d 260281 2. 60281 3.16632 3.16632 4. 35514 4. 35514
30| ¢ 4.50509 6. 23747 5.00839 6. 74485 6. 02789 7.76623

d 2.52510 2.52510 3.03673 3.03673 4. 05996 4. 05996

20| ¢ 4.73175 6. 56089 5.25429 7.08657 6. 34869 8.18239

k=4 d 2.72557 2.72557 3. 25895 3. 25895 4. 35881 4. 35881
40| ¢ 4.62953 6. 31587 5.11470 6. 80558 6. 08671 7.77963

d 2.66130 2.66130 3.15423 3.15423 4.12954 4.12954

25| ¢ 4.80966 6.57942 5.31374 7.08753 6. 35376 8. 12946

k=5 1 d  2.81848 2. 81848 3. 33239 3.33239 4.37710 4.37710
50| ¢ 4.72418 6. 38381 5.19750 6. 86177 6. 13886 7.80513

d 2.76328 2.76328 3. 24379 3. 24379 4.18809 4. 18809

[Received August 1982; Revised October 1982]
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