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ABSTRACT

A problem of selecting the least probable cell in a multinomial distribution is studied in a
Bayesian framework. We consider two loss components - the cost of sampling and the difference in
cell probabilities between the selected and the least probable cells. A Bayes sequential selection rule
is derived with respect to a Dirichlet prior, and it is compared with the best fixed sample size

selection rule. The continuation sets with respect to the vague prior are tabulated for certain cases.

1. Introduction

The multinomial distribution often provides a statistical model for maﬁy problems in
the real world. Also, we often ask the question: which events is the most probable or
the least probable among the events under consideration? Bechhofer, Elmaghraby and
Morse (1959), and Kesten and Morse (1959) were the first to study the problem of
selecting the most probable cell in the so-called indifference-zone framework. Cacoulos
and Sobel(1966) considered the so-called inverse-sampling procedure for the same problem.
Recently, Ramey and Alam (1979, 1980) proposed sequential sampling procedures for
éelectin gthe most probable cell.

While various selection procedures have been proposed and studied for selecting the
most probable cell, the problem of selecting the least probable cell has not been studied
much. Following Bechhofer et al. (1959), Alam and Thompson (1972) considered the

so-called preference zone

Q<A> = {(Pb M) Ph) | b — PEUZA}
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where <A <(k—1)-! is given and Dol - <pay
are the ordered values of p,, ---, P: and they considered a fixed sample size procedure
which guarantees a high probability of selecting the least probable cell as long as the
cell probabilities p,, -, p, are in Q(A). We call such a methed the indifference-zone
approach. Although it has a certain statistical meaning, there is also a criticism on the
pre-specification of the preference zone.

In this paper, we study the problem of selecting the least probable cell in a multinomial
distibution from a Bayesian approach. The formulation of the problem and some nota-
tions are introduced in Section 2. In Section 3, the Bayes sequential selection rule is
derived and the simplification of the rule is given. Section 4 consists of the comparison
of the Bayes sequential selection rule with the best fixed sample size Bayes selection
rule. Table] gives the continuation sets with respect to the vague prior for certain
cases, and Table I shows how much savings can be obtained by the Bayes sequential
selection rule. Also, the FORTRAN subroutine program has been prepared for the
practical implementation of the Bayes sequential selection rule, and it is available upon

request,.
2. Statement of the problem.

This section gives a decision theoretic formulation of the problem along with the
introduction of some notations to be used.

Let x,, X3 -+ be a sequence of independent and identically distributed random vectors
from the multinomial distribution 21(1, p,, ---, Py Ditetpi=1, p>0, 1=1,., k.

we consider the problem of selecting the least probable cell z.,, asscciated with D=
-

min p; based on the observations which are taken one at a time, It is clear that for
12Zi<k .
any fixed # the joint probability function of X, - Xa is given by

@1 JC vy Balbyy oy pO=piepian
where ¢, denotes the cell frequency i.e.,

(biny sy tbn):ZI X

Let ¢>0 denote the relative cost of sampling per unit observaticn as regards to how

much different the selected p: is from pe,. Then the loss is given by
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2.2 L((n, dD, p)=nc+(pi—puws)
where (n,d;) denotes the decision that the cell z; associated with p, is selected as the
least probable cell after having observed # units.

We shall try to find a rule which minimizes the average loss given by (2.2) from a
Bayesian point of view. We assume a Dirichlet prior D(ay, -+, as) for b4 whose density

function is given by

@9 D=y P A

a=a;+-tai, >0, i=1,-k
3. Bayes sequential selection rule.

In this section, the Bayes sequential selection rule with respect to the Dirichlet prior
D(a,, -, ai) and the loss function given by (2.2) is derived, and the simplification
of it is given.

Since the Bayes sequential selection rule consists of the terminal selection rule and the
stopping rule, we first consider the terminal selection rule. It follows from the loss
function given by (2.2) that the Bayes rule for fixed sample size # is determined by

minimizing the posterior expected value of p;, ie.
3.D E@ilx:=%, = Xn=%)=(aitln)/(a+n), i=1,, k
Therefore, the next result follows from a theorem in Ferguson (1967), p.314.

Lemma 1. After chserving ¥1= X1, Xa=%n the terminal selection rule selects the

cell z; if
(3.2) a;+la=min(a,+tn, *, astlin)
where (Frmy =ovy l}zn>:zn: Xi

i=1

Now we consider a Bayes sequential selection problem truncated at J as usually done

in a sequential decision problem. First, we introduce some necessary notations. Define
3.3 Un(¥s, w, %)= inf EAL((n, d), P X =%y
ey Xa=Xa), n=0,1, -, J
It follows from Lemma 1 that U,(¥,, ---, ¥.) can be written as

G U.(xy, -, ¥ =nc+min(ai+t.)/(a+n)
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Also, to use the backward induction, we define Vm(zcl, v, X)) for n=J, -1, -, 0
inductively by
V.;J)('xls "t 'XJ):UY-’(%;I, "0ty Z!)

V,(;J)CZQ, °tt lfn):min{Uanu °tt Xﬂ)9

3.5
E<V7(x{+—)1(¥17 cety Xny Xn*‘l)IXl:Xla e aXn:?;rJ}’
n=J—1, J=2, < 0.
It is clear that V,“(y,, .-+, ¥.) denotes the minimum conditional Bayes risk in the
truncated problem after having observed X1=%¥, +, X»=%.. Obviously, V, denotes

the minimum Bayes risk for the truncated problem. The next result gives a bound on
J to obtain the Bayes 'sequential selection rule for the general problem.

Lemma 2. Let V> denote the minimum Bayes risk for the general problem specified
by (2.2) and (2.3). Then,

Vo) =

where J, is the greatest integer such that J,<max{c-!—a,1}.

Proof. Since pi—pu; is bounded, it follows from a theorem in Ferguson (1967), p.318
that V,— V> as J—oo, Furthermore, it follows from(3.4) that

UnesC¥y, ooty ¥n-0) = EUa(Ey, o Sonet, Xod | X107 00 00 Kot =Fnm0)
=min(a: +t:,-1)/(@+n—1)—E(min(a:+ £, .~ + Xin) |
Xi=%y, o Xn-1=%n-1)/(@+n)—c
<min(ai+ti,.-)/ (@+n—1)—minCa: +ti,.-,)/(a+#n)—c
<(at+n)~'—c.

Therefore, for all #n> J,,

Un-1(¥y, oo ¥a-) = EQUR (%1, 40, Fnety X | X080, 00,
Xn-1=¥%.-0) 0.

Thus the result follows from a theorem in Ferguson (1967) p. 322.

It follows from Lemma 1 and Lemma 2 that the Bayes sequential selection rule is
completely determined by the backward induction, which can be summarized as follows:
(a) Stopping rule: Stop sampling after taking n (0<<n<J,—1) observations Xy, e, X, 0f
and only if

Uﬂ(’;h ttty X,,)<E<V,(.J+°l)<,;¥l, R xn;X'ﬁl)JXl:%’-h ) ‘Xn:-?f‘n>
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and stop sampling for n=J,.

(b) Terminal selection rule: After stopping with observations ¥, -, ¥a, select the

cell z; if

ait+tia=min{a,+tm, *, autlin)

where f., -+, fi. are the cell frequencies.

However, it is difficult to implement the above stopping rule due to the difficulty
involved in the computation of E(pcn| X1=¥%1, -, Xa=%n).

Therefore we need to simplify the stopping rule. In order to do this, we introduce

some notations as follows: Define

3.6) Wk(xy, +, %o)=nc+min(a:+t.)/(at+n), n=0,1, =, Jo
6.7 Walty, o ¥)=E(Dus| X1=%1, 0 Xn=%a), #=0,1, *-, Jo.
VaO*(xy, oy ¥2)=WEE, -+ ¥ao).
3.9 VEOr(g, -, g)=min{WEE, - 5,
E(VZ0*(xy, w0 ¥ XntD | X181 00 Xa=¥a)}
n=Jo—1, Jo—2, - 0.
It follows from (3.4) that
G Un(xy, o E)=WiF, o ¥)—Walry, o %0,
n=0,1, -, /.
Lemma 3. Let V¥(xy,, -¥.), VI?*(¥y, +, ¥») and W,(x, -+, ¥.) be defined by
(3.5), (3.8) and (3.7), respectively. Then we have
VIR, o #)=V I, oy £)=Walgy, o %0,
n=0,1,+, /o
Proof. We shall prove this lemma by induction. By (3.5), (3.8) and (3.9), the
result holds for n=_J/,, Suppose that it holds for a given #>1. Then,

VSKJ—OI)(XI, "t ch-x)

:min{Un-l(XU AR l"u-l),E(Vﬁ“)(lﬁ, "'92€n—1,Xn)l
.Xl:’!h"', Xn—I:Xn—1)}

:min {W:':_1(3;1, ttty xﬂ‘l)—Wn‘l(Xh % Xn—l)y

EQVI* (&g, 0 ¥nmty Xa) [ X1=20, 000, Xno1=%n1)
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—EEw| X1=%1, " Xn-1=¥a-1, X))}
=min {W 3., -+, $a-d, ECV I (@ o, 2y X0
X1=%0, Xn-1=¥%n-1)} = Waei(Fy, o+, Xaey)
= VI %y, oo ¥n-1) ~ Waei(¥y, o0y Xacy).
Hence, it holds for #—1, which completes the proof.
Lemma 4, For U.(¥,+,%,) and V{9(x,, -, %.) given by (3.4) and (3.5), the
following relation holds:
Un(¥y, o0 %) <ECV R (%1, 200 Xy Xoa DX 1=%1,00%, Xn=¥n)}
if and only if
Wy oo 20) <E(V 20*(F1, 00y ¥y X ) [ X1=F1, 5 00, Xn=%2)

Proof. From Lemma 3, we have
E(Vf-iol)(«}'n "ty 9!:-, X"*‘I)LX]::!I:"" X":‘X")
=E(V 330* G, 200y Fny Xnr1) = Warr (¥, 000y Fay XD |
X1=%1, 0% Xn=%x)
=EQV 50* 0y Xuy Xne) | X1= %1, 00y Xa=%a) — Wa(¥y, o, %),

which completes the proof by (3.9).
Note that E(V $* (%, -y ¥ny Xn+1)].2(1=2’h"'s X»=%.) can be computed as follows:

By (2.1), (2.3), the marginal distribution of Xi,-*, X+ is given by

(3.10) Sy ooy Knrr)
_ r'ia) L Lt ) Lt tnn) 00
T Tla)Tan Tlatn+D) ’ e

so that the conditional distribution of Xn+1, given X,=%y,+++, Xa=¥,, is represented as
(3 11) f(xn+1 IXl:-;Vl, ey Xn:xn)z(a;+t;”)/(a+n) if ¥n+1=€i

where ¢; is the k-dimensional unit vector of which the i** element is 1.
Thus, by (3.11),

3.12) E(V &0%(xy, 00, X, Xa+1) ]Xl:xh oee, X":'x")

a;+4; *
:'21 T{_jf— o (X ey Xy f:)
i=

Now, we can summarize all the results so far in the following theorem.
Theorem 1. The Bayes sequential selection rule for the general problem specified by
(2.2) and (2.3) is given as follows:

(a) Stopping rule: Stop sampling after taking # (0<n<J,—1)observations ¥y, -+, ¥» if
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and only if
W:(qu *% xn) <E(V§ll+°1)*(x1’ 20ty Xny X"‘*l)I-Xl:'yla "ty X”:XHD

where W *(¥y, +++, %) and E(V ¥ (X, +ey ¥ny Xnr) | X1=%1, -+, Xa=%.) are given by
(3.6) and (3.12), and stop sampling for n=J,

(b) Terminal selection rule: After stopping with observations ¥,, -+, ¥., select the cell

7z if
ait+lin=min(a;+fin, o artlan)
where {;., --+, 3, are the cell frequencies.
Note that, for a symmetric prior D(a, +**, @), the implementation of the Bayes sequential
selection rule can be simplified considerably. For a symmetric prior, the Bayes sequential
selection rule is invariant under the permutation of (£, -+, fx.). Moreover, the truncation

number J, turns out to be much smaller. In fact, the inequality
min(ay+2i, -1 <ap+(n—1)/k
can be used to prove the next result just as Lemma 2 was proved.
Lemma 5. For the symmetric Dirichlet prior D(ay, -, @), the truncation number J,

in Theorem 1 is the largest integer such that

(3 13) ]o < max {(kc)_lbkao, 1} .
Lemma 5 is used to find the continuation sets, that is, the sets of the cell counts

where the sampling should be continued, for £=2(1)5, ¢=0. 01, 0. 008 and a,==1 in Table T,

4. Comparative study for the vague prior.

As pointed out in Section 1, many selection rules have been proposed for the problem
of selecting the most probable cell. Mainly, they are different in sampling rules-fixed
sample size, inverse and Bayes sequential sampling rules. The results of the comparative
study have been reported in Ramey and Alam (1980). However, for selecting the least
probable cell, it seems clear that the inverse sampling scheme cannot work. In fact, no
inverse sampling rule has been devised yet for the problem of selecting the least probable
cell. Now, for such a problem, we have two selection rules at hand, namely, the Bayes
sequential selection rule (BSSR) proposed in this paper and the fixed sample size rule of
Alam and Thompson (1972). of course, the fixed sample size rule has been proposed in

a different framework, i.e., the indifference-zone approach, which is different from that
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in this paper, i.e., the Bayesian approach. However, it would be interesting to compare
them and see how much saving can be obtained by BSSR.

In this section, we make comparisons of BSSR and the best fixed sample size Bayes
selection rule (BFBSR) with respect to vague prior D(1,--,1). Let V. denote the Bayes
risk of the fixed sample size Bayes selection rule where the sample size is #, and let
Ve=minn V; denote the Bayes risk of BFBSR. Then, as was done in Ramey and Alam
(1980), we consider ¢ defined by

4.1 ¢=~YEVI§—’——><100

where V§'® denotes the risk of BSSR.
The value of ¢ represents the savings by BSSR in terms of percentage.
To obtain the value of ¢, We consider the computation of V§’* in the first place. It

follows from Lemma 3 that 17§{’* is given by
4.2 VEr=VEor—w,
where W, and V§’* are defined by (3.7) and (3.8), respectively. In order to compute
W,, note that if ,?ND(I,---, 1), then we can represent p,,---, p. as
pi:Zi/(Zl+"'+Zk>7 l:]-v "ty k
where Z,, -, Z; are lID exponential random variables with mean 1. It follows from the
independence between p; and Z,+---+Z, that
4.3) Wey=E(min p:)
=E(min Z))/E(Z,++Z))
:k'z'
Thus, from (4.2), we have
4. 4) V=T o*_p-2
where V{’** can be computed easily, Next, we turn to the computation of Ve=min V3.
It follows from (2.2) and (2.1) that V} is given by
(4.5) Vi=nc— Wi+ {1+E(min T:)}/(n+k)
where the expectation is taken with respect to the marginal distribution of Ty, *++, Tin.
It is obvious by (3.10) that the marginal distribution of T\., -, Tia is given by

p(Tzn, :l‘zn, ooy Thn:thn)T—(an)'l
where WHo=+k—1D1/ {(k—1Dnl}.
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Thus, we have
(3]s

@« Visne et i (e e G sk

HE )

where [x] denotes the greatest integer function. Hence, we can compute V;m by (4.4)
and Ve=min V} by (4.6).

Table I ﬂbelow gives the values of V;“), Ve and ¢ for c=0. 002¢0. 001)0. 01, 2=2(15
with respect to the vague prior D(Q, -+, 1).

One final remark should be in order. We assumed in this comparative study the vague
prior for computational simplicity. However, the same method can be applied to the
symmetric prior D{(a,, ---, @), if desired. In such a case, we need the table by Gupta(1960)

for the values of W,

Table |. Continuation sets for the uniform prior (a,=1),
(* means “No continuation sample point for #”.) (A) ¢=0.01
P 3 | 1 5 |
0 0,0 | €0,0,0) 0,0,0,0) 0,0,0,0,0)
1 oD o1 €,0,0,1) ,0,0,0,1) :
2 aQ,nD| LY 002 0,0,1, 1), (0,0,0,2) 0,0,0,1,1),€0,0,0,0,2) }
3| (1,2 (L,LD 00,3 0,0,1,2),(0,0,0,3 0,0,1,1,1,0,0,0,1,2)
(0,0,0,0,3)
4 @2 4,1,2) 0040 0,0,2,2),(0,0,1,3 0,0,1,1,2),(0,0,0,2,2) |
(0,0,0,4) (0,0,0,1,3),(0,0,0,0,4) |
51 @] 0,220,1L90.05 | (0,0,23),0,0,1,4 * ‘
(0,0,0,5) f
6 | 331 (222 1,1,9 (0,0,6) * :
7 G| 2,3 1,15 ‘
8 | (49| @249 (1,16 ’
9 (4,5) 22,5 1,1,
10 (5,5) 2,2,6) (1,1,8
11 6,6 | (2,27
12 6,6) | (2,2,8
13 * 2,2,9
14 %
Table I (Continued). (B) C=0.008
PR 3 | . | 5 |

l o | @0l ©o00 (0,0,0,0) ‘(o,o,o,o,o) ’
1 D] (0,0, €0,0,0,1) 0,0,0,0,1) ‘
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2 | LD ©1,D,0,0,2) (0,0,1,1),(0,0,0,2) {0,0,0,1,1), (0,0,0,0,2)
3| L2 1,1,1,0,0,3) 0,0, 1,2),(0,0,0,3) 0,0,1,1,1),€0,0,0,1,2)
0,0,0,0,3)
4 | @2 4,1,2,00,0,4 (0,0,2,2),0,0,1,3) (0,0, 1, 1,2, (0,0,0,2,2)
0,0,0,4) 0,0,0,1,3),(0,0,0,0,4)
5 1 %] (1,22),1,1,3 ©,0,5 | (0,0,2,3),0,0,1,4) 0,0,1,2,2),0,0,1,1,3)
(0,0,0,5) (0,0,0,2,3),(0,0,0,1,4)
(0,0,0,0,5)
6 | 3,3 22,0,1,4,0006 | (0,0,33),0,0,24) %*
(0,0, 1,5, (0,0,0,6)
7 G| 223,015,007 *

@ | 2,3,3,2249,0,1,6)
9 | &5 33,3,(225,1,1,7D
10 | 5,5 | (33,4,(,26),1,1,8
11 G,6) | (3,3,5,2,2,7,0,1,9
12 6,6) | (3,3,6),(2,2,8),1,1,10)
13 1 6,7 337,02,2,9
14 7,70 3,3,8),0,2,10)
15 | (7,8 (339,221

16 | B8] (3310

17 % 3,3,1D
18 3,3,12)
19 %

Table ] . Values of V ¥’ V;: and ¢ for the vague prior (a,=1).
0 ’

Jo) !

] Vs ‘ ¢ | Ve i Ve } ¢ Vo V:’J“ ‘ Ve I ¢
.002 | .0290 | .0407 | 28.8 | .0396 | .0483 | 17.9|.0455 | .0516 | 11.8|.0496 | .0539 8.0
.003 | .0362 | .0488 ' 25.8 | .0489 | .0583 | 16.2 | .0560 | .0624 | 10.3 | .0610 | .0651 6.3
.004 | .0420 | .0557 | 24.7 | .0567 | .0663 ; 14.5 | .0645 | .0710 9.11.0706 | .0744 5.1
L0051 .0475 | .0607 | 21.7 |.0634 | .0737 | 13.9|.0721 | .0786 8.3(.0789 1 .0821 3.9
.006 | .0528 | .0657 | 19.6 |.0694 | .0796 | 2.81 | .0788 | .0854 7.7 | .0864 | .0891 3.0
.007 | .0574 | .0707 | 18.8 ; .0749 | .0846 | 11.4 |.0851 | .0914 7.0 {.0931 | .0951 2.0
.008 { .0605|.0740 1 18.2;.0768 | .0896 | 10.9 | .0908 | . 0965 6.0 .0993 | .1008 1.5
.009 | .0637 | .0770 | 17.3 | .0841 | .0946 | 11.1 |.0961 | .1016 5.4 | .1051 | .1058 0.7
.010 | . 0668 | .0800 | 16.5 | .0882 | .0996 | 11.4 | .1011 | .1061 4,7 .1101 | . 1108 0.6

J
c Joy
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