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ABSTRACT

Selection procedures are proposed for selecting the ‘best’ industrial process with the smallest
fraction defective. For normally distributed industrial processes, this is equivalent to selecting in
terms of coefficients of variation. For the case of known variances, selection procedures by
Bechhofer (1954), and Bechhofer and Turnball (1978) are appropriate. We treat this problem for
the case of unknown variances with or without reference to a standard. The large sample solutions
of design constants are tabulated and the performance of these approximate solutions are
investigated.

1. Introduction

Suppose that we have k industial processes 7,,---, II. producing similar items, and
that the quality of each item produced by 7 is characterized by a normal random variable
X: with mean g and variance ¢?(i=1,--+, £). Each item is considered satisfactory if
X: exceeds a given lower specification limit L. Since L may be assumed to be 0, the

fraction defective in the process /I; is then

Di=P.(X:<O)=0(~p/0:)
where ©(.) is the cdf of standard normal distribution. This paper studies selection
problems in terms of the fraction defectives or, equivalently, the coeffcients of

variation under the framework of the socalled indifference-zone approach of Bechhofer
(1954).
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For the case of known variances, this is reduced to the selection problem in terms of
means. The procedures of Bechhofer (1954), Bechhofer and Turnbull (1977), and
Bechhofer and Turnbull (1978) may be appropriate for the comparison of k& processes
with or without a standard.

For the case of unknown variances, the problem is essentially the selection problem in
terms of coefficients of variation. This problem is not considered in the literature so far.

Section 2 trea‘s the problem of selecting the ‘best’ process with reference to a stand-
ard. Because of the close relationship of this problem to the sampling acceptance plan
in statistical quality control, we formulate the problem in a manner similar to the
sampling acceptance plan. We propose two procedures - one for the case of common
unknown variance, and another for the case of unegual unknown variances. The
procedures are designed to satisfy the two basic probability requirements. Also, some
other properties of the procedures are studied. Computer program has been written to
find the design constants, which is available upon request. Large sample solutions of
the problem are tabulated, which are compared with the exact solutions for some selected
cases.

In Section 3, we consider the problem of selecting the ‘best’ process among k
processes without reference to a standard. We propose a procedure for the case of
unequal unknown variances with a modified ‘indifference-zone’. The infimum of the
probability of seleting the ‘best’ process is found in order to determine the necessary
sample size. A large sample solution of the problem is also derived, and compared with

the exact solution for some selected cases.
2. Selection of the best with reference to a standard

We assume that the quality characteristic of each item produced by the process II: is
normally distributed with unknown mean g and unknown variance ¢?(1<{i<Ck), Further,
it is assumed that there is a lower specification 0.

Let p:=&(-p:/0:) denote the fraction defective in the process //: (1<i<k). The ordered
values of the p. and #;=pu./o: are denoted by pcy<<++<<pwy and ¢y <<---<L0usy, reESpec-
tively.

For a given standard p¥, the goal of the experiment is to select the ‘best’ pr ccess,

i.e., the one associated with the smallest fraction defective p¢y provided pe; <pt, and
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in case no process has the fraction defective smaller than p¥, then to reject all the
processes.

As is usually done in the sampling acceptance plan, it is assumed that, prior to experi-
mentation, the experimenter can specify the constants {p¥, p¥, a, B} where 0 <pF <p¥

<1,0<a<1,0<8<1, so that any selection rule satisfies the following probability

requirements:
P, {selecting the best}> 1—a 2. 1a)
whenever Dan<<p¥, pm=p¥, and
P {rejecting all the processes}>1—2 (2. 1b)
whenever D= pF

Note that, in this formulation, p¥ and p¥ play the role of the acceptable quality level
and the lot tolerance percent defective, respectively, in the sampling acceptance plan.

(A) The case of common unknown variance

We propose the following natural selection procedure to guarantee (2.1a) and (2.1b)
when ¢i=-.-=¢2=0¢? is unknown:

Take n independent observations X,;(1<j<n) from I; (1<i<k). Compute X.=
n k n —_— —
Z}l Xii/n and SZ:E __Zl(Xi,-—X,-)Z/k(n——l). If max X:<cS, reject all the processes, and

if max X.>cS, then select as the best the process yielding the largest sample mean.(2. 2)

To implement the procedure, we need the design conmstants, i.e., the sample size n
and the appropriate ¢ which guarantee (2.1a) and (2.1b). Let @(-) denote the cdf of
the standard normal distribution, and let £.(+) denote the pdf of chi-squared distribution

with v degrees of freedom. Also, let X /S denote the statistic associated with 8;,,

j:l, “ee, k.
Then, for v=k(n—1) and 8f=—0-1(p*) (j=0,1)

P, {selecting the best}
=P.{Xu/S>¢, Xm/S:lfsngii X»/S}

25: Sw ‘ﬁl O(x— V7 0ir)d O(x— ¥ Rbus )gu(3)dy

cvnysn

> oG- vm 6 doGi—vE 69 £.()dy

1] cvny s



Choi, Jeon, Kim : Selection in terms of Coefficients of Variation 15

whenever by <p¥ and P> pt, e, Oun=>65 and Ou-in <01

Also, P, {rejecting all the processes}
=P X:<cS, i=1,+, k}

= (" T1 oG vimTv— v 07 8:(3)dy

25: Or(c vny/v— vn 6%) g.(3)dy
whenever pgy=>p%, ie., 6u,<6% Thus, we have the next result.

Theorem 2.1. In order to guarantee (2.1a) and (2.1b), the smallest sample size #

and ¢ in the procedure (2.2) should be chosen to satisfy

[0 __omi-va oDd oG — vEoD g.(Ndy=1-a

0
(2. 3a)
and

" ore v v 0D g.(5dy=1-p (2.30)
where y=k(n—1) and 6%=—0-1(p¥) (i=0,1).

Computer program to solve (2.3a) and (2.3b) has been prepared using 16 point
Gauss-Laguerre quadrature formula, which is available upon request. For selected values
of k, p% p* a and 8, the program has been run and it has been found to be time
consuming. Therefore, it would be useful to have a large sample approximation to the
exact solution.

It follows from the asymptotic distribution of (X4, X» S?) that, for large n,

VHE(X)S—0)~Zi+6:.2Zy/ v2 & (i=1,-, k)
where Z,, Z,, -, Z are independent standard normal random variables. Therefore, for
O,=-+=0:-=6% and 6:=067,
P, {selecting the best}
=P.{X.:/S>c, Xi/S=max (X./S)}
=P Zi—~0% Z,/ V2 k> v (c— %),
Zv—0F | V2B Zi—0F Zo/ V2k+ ¥ (6F—06F) i=1,-, k—1}
= e o 0T 3/ VIR VEE1-09)
do (x+63 y/ V2 E)AD()

and, for §,=-=0i-=0.=0F,
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P, {rejecting all the processes}
=P {X:/S<c, i=1,+ k)
ZPAZi~0% Zo/ V2R< v u(c — 07), i=1,, k}

={"_ o0t 1/ vZE+ Vi c—09)d 0(x)
Hence, the large sample solution of (2.3a) and (2.3b) is given by

n=C{g/OF -0} +1, c=0t+h(0F—6D)/g @
Where the constants g and % satisfy
S5, 0oty v2R+g) dOCet0t 3/ VI do(y)
=l-a (2.5a)
7 0x@t 5/ vZE+1) doCx)=1-8 (2. 5b)
and (-] denotes the greatest integer function. The values of # and ¢ given by (2.4)
are given in Table 1 for £=2(1)5, 1-a=0.95, 1—8=0.9 and selected values of
by and pf. These values are obtained by the large sample approximation. Hence, to see
how accurate these approximations are, we have compared the values in Table 1 with

the exact solution for the following cases:

k=2
%
Exact l Approximate
2% b*: n 4 | n 4

6 18 37 1.2308 37 1. 2091
24 20 1.1129 21 1. 0886

36 10 0.9403 10 0.8848

8 24 29 1. 0503 29 1.0272
32 16 0.9224 16 0. 8907

48 7 0.7218 8 0.6520

10 30 23 0. 9004 24 0.8725
40 12 0. 7653 13 0.7194

60 6 0.4414 6 0.4403

The computations were done using 16 point Gauss-Hermite quadrature for the appro-
ximate solutions, and using 16 point Gauss-Laquerre quadrature for the exact solutions,
both in the IBM Scientific Subroutine Package. As can be seen from the comparison
results, the approximations to # and ¢ are sufficiently accurate enough for practical
purposes. Furthermore, the comparison result shows that the approximation to # is quite

good even for small #; hence we can use the values of # and ¢ in Table 1 as an initial



Choi, Jeon, Kim : Selection in terms of Coefficients of Variation 17

Table 1. Large sample solutions for the design constants (n,¢) in the procedure (2.2)
for 1—a=0.95, 1—-58=0.9.

% | k=2 | k=3 ’ k=4 ‘ k=5
¥ *
Py | D1 ’ n ' ¢ l n . ¢ 1 n ’ ¢ | n i c

1| 3| 2 2.0872 | 103 2.1016 | 99 2.1103 | o7 2.1174

4| 65 2.0132 | 60 2.0327 | 58 2.0452 | 57 2. 0540

6 | 35 1.8982 | 33 1.9264 | 32 1.9443 | 31 1.9569

2 | 6| 78 1.7853 | 74 1.8019 | 72 1.8124 | 72 1.8198

8 | 45 1.6994 | 43 1.7224 | 42 1.7368 | 42 1.7469

12 | 24 1.5632 | 23 1.5970 | 23 1.6181 | 23 1.6328

4 | 12 | 50 1.4399 | 50 1.4509 | 50 1.4721 | 50 1.4807

16 | 29 1.3358 | 28 1.3638 | 29 1.3809 | 29 1.3928

24 | 15 1.1649 15 1.2071 | 15 1.2328 | 15 1.2505

6 | 18 | 37 1.2091 | 38 1.2316 | 38 1.2454 | 39 1. 2549

24 | 21 1.0886 | 21 1.1207 | 22 1.1401 | 22 1.1535

36 | 10 0.8848 | 11 0.9337 | 11 0.9631 | 11 0.9832

8 | 24 | 29 1.0272 | 30 1.0521 | 31 1.0671 | 32 1.0775

32 | 16 0.8907 | 17 0.9263 | 17 0.9477 | 18 0. 9624

48 | 8 0.6520 | 8 0.7062 | 8 0.7386 | 9 0.7608

0] 30 | 2¢ 0.8725 | 25 0.8995 | 26 0.9158 | 27 0.9270

4 | 13 0.7194 | 14 0.7581 | 14 0.7813 | 15 0.7971

60 | 6 0.4403 | 6 0.4980 | 7 0.5329 | 7 0. 5569

quess if we want to search for the exact solution.

The performance characteristics of the procedure(2.2) are given in the next result
when changes are made in the indifference-zones for this problem.

Theorem 2. 2. The procedure (2.2) with » and ¢ asin Theorem 2-1 also guarantees,
for 2<<t<k,

P, {selecting any one of the f best}>1—a (2.6)
whenever P < p¥ and Py < pr< P+

Proof. It is easy to see that
P, {selecting any one of the ¢ best}

=P,{ max X/S=c, max X;/S= max X/S} (@7

k-t+1cjik k-t+1<jZk 1ojSk~t

where X;,/S is associated with ;. 7=1, -+, k. Note that, given S/o=w, X,

X, are .independent and normally distributed with mean 8.,/w (j=1, -, £) and
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variance 1/(nw?), respectively. Hence, given S/e=w, the distribution of X is
stochastically increasing in #.,,. Therefore, (2, 7) is increasing in 8, for k—t+1<j<<k

and decreasing in 6, for 1<j<t, i.e., decreasing in p;; for 1<<j<f and increasing in
Doy for £+1<j<k,

Thus,

P, {selecting any one of the ¢ best|py,, <PHE, Pr<p¥<prts}

> P, {selecting any one of the ¢ best|pos=pE, Pio=+-=pu=p%}
> P, {selecting the best [ Por=D0%, pey=+=pu, =p7}
Zl—a,

which completes the proof.
(B) The case of unequal unknown variances
When o3, .-+, 6% are unknown, the following natural selection procedure can be used
to guarantee (2. 1a) and (2. 1b):
Take 7 independent observations X;; (1<<j<n) from II; (A<i<k).

Compute T:=X,/S; where SE::; (Xo—XD/ (n—1).

If max T.<c, reject all the processes, and if max T:>c¢, then select
as the best the process yielding the largest 7. 2.8
The design constants 7 and ¢ to implement the procedure (2.8) should be determined
by the next result, which can be proved in a way similar to the proof of Theorem 2.1,

Theorem 2.3. In order to grarantee (2. la) and (2. 1b), the smallest sample size n

and ¢ in the procedure (2.8) should be chosen to satisfy
U P vmon dFGl vt >1-a (2. 92)

PVl vuoH=>1-8 (2.9b)
where F(x|2) denotes the cdf of non-central ¢ distribution with #—1 degrees of freedom
and the non-centrality parameter i, .

A computer program to evaluate the left-hand sides of (2.9a) and (2.9b) has been
prepared using 16 point Gauss-Laguerre quadrature formula.
As in the case A, the large sample solution of (2.9a) and (2. 9b) follows from the

fact that, for large n,

sinh~'( 7./ v 2)~N(sinh-1(6;/ v2), 1/2n).
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Suppose that & and g satisfy the simultaneous equations
[ o x+g)do(x)=1-a (2. 10a)
or()=1-5. (2. 10b)
Then, the large sample solution of (2.9a) and (2.9b) is given by
n=(1 g/ (&—ED1*)+1,c= vT sinh(&, 1 h(&-£)/g) (21D
where £,=sinh-1(6%/ v 2 ) and &=sinh-1(6}/ v 2).

The values of # and ¢ given by (2.11) are given in Table2 for k=2(1)5, 1—a=0.95,
1—8=0.9 and selected values of p*, and p*,.

Table 2, Large sample solutions for the design constants (si.c) in
the procedure (2.8)for 1—a=0.95, 1—8=0.90.

% | k=2 | k=3 | k=4 | k=5 :
* *
Do l b, 1 n \ ¢ l n ! ¢ ( n | ¢ l n c
1 3 178 2.0926 199 2.1040 214 2.1112 225 2.1164
4 102 2.0209 114 2.0358 123 2.0451 129 2.0517 |
6 53 1.9102 60 1.9300 64 1. 9425 ‘ 67 1.9514 |
2 6 116 1.7903 | 130 1.8031 140 1.8112 147 1.8169
8 65 1. 7068 73 1.7234 78 1.7339 83 1.7414 |,
12 33 1.5746 37 1.5971 40 1.6113 42 1.6214
4 12 69 1. 4442 ‘5 77 1.4590 83 1.4683 87 1.4750
16 38 1. 3421 42 1.3615 45 1.3737 47 1.3824 :
24 18 1.1743 20 | 1. 2009 22 1.2177 23 1.2297
6 18 48 1.2127 | 53 1.2291 57 1.2394 60 1. 2468
241 25 1.0938 .+ 28 1.1155 30 1.1292 32 1.1390
36 12 0.8921 "‘ 13 0.9224 14 0.9415 15 0. 9551
8 24 35 1.0301 | 40 | 1. 0480 43 1.0593 45 1.0673
32 19 0. 8948 21 0.9187 22 0.9337 23 0.9445
48 8 0.6579 9 | 0.6918 10 0.7132 10 0. 7285
10 30 28 0.8747 31 0.8941 33 0.9063 35 0.9150
40 14 0.7226 16 0.7487 17 0.7651 18 0.7768
60 6 0. 4461 7 0.4841 7 0. 5080 8 0.5251 |,

To see how accruate these apporximate solutions are, we have computed the actual
values of (2.9a)and (2.9b) for k=2; the values below are the actual values for
nominal ]—a=0.95, 1—3=0.90.

‘As can be seen from the below computation, the actual values of 1—a (1—8) are



1—a | 1-8 | % 1-a | 1-8 |

* 1—a ’ 1-8 ” P*oi p*
6 | 18 0.940& 0.022 | 8 | 20 | 0.041| 0926 10 | 30 | 0.957] 0.919

24 0.939 0.932 ]} 32 0.934 0.923 ; 40 0.936 0.926
36 0.931 5 0.929 ‘ 48 0.934 0.931 60 0.930 0.912

slightly less (larger) than the nominal values, where the differences are small enough
for practical purposes. The values of # and ¢ in Table 2 can be also used as an initial
guess if one wishes to search for the exact solution for particular p¥, p¥ k. It should
also be remarked that the values of % and g satisfying (2. 10a) and (2. 10b) are tabulated
by Bechhofer and Turnbull (1978) for some other values of « and 8 and k=2(1)5.

The following performance characteristic of the procedure (2,8) can be obtained in
the same way as Theorem 2.2 was proved except that we need the stochastic ordering
property of the non-central ¢ distribution.

Theorem 2. 4. The procedure (2.8) with # and ¢ as in Theorem 2 also guarantees,
for 2<t<k,

P,[selecting any one of the / best)>>1—a (2.12)

whenever P pf and pia< p¥< P

3. Selection of the best without a standard

As in the previous section, we assume that the quality of the process ; is characterized
by normal distribution with unknown mean u: and unknown variance g2 (1<<i<<k).
Also, it is assumed that there is a lower specification limit 0.

In this section, we consider the problem of selecting the ‘best’ process without reference
to a standard, where the ‘best’ process is clealy associated with Gy

Follwing the indifference-zone approach by Bechhofer (1954), the experimenter, prior
to the experimentation, specifies two constants 4*>0 and «(1/k<1—a<1), which are
incorporated into a probability requirement

P, {selecting the best} >1-a«a G

whenever 8¢z >0cx- 13+ A*.

For this purpose, it is natural to consider a selection procedure based on a statistic
T.=X./S:. However, it can be easily shown that the minimum probability requirement

(8.1) can not be satisfied by any selection procedure based on T (1<i<k) (see, for
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example, Dudewicz (1971)). On the other hand, the experimenter assumes that a<f;<b
(1<i<k) in many practical situations. Thus, with such a restricted parameter space,
the minimum probability requirement is modefied as follows:
P, {selecting the best}>1—a (3.2)
whenever Bei=>0u-n+A* and a<d:<b (1<i<k).
we propose the following natural selection procedure to satisfy the probability require-
ment (3. 2).

Take » independent observations X;;(1<<j<#) from [l; (1<i<k). Compute T:=X:/S.
Then, select as the best the process yielding the max 7. (3.3)
Note that the above selection procedure is equivalent to that in terms of 8:=h(T)

for a non-decreasing function . In this respect, we remark that any Bayes estimator
of §:; with respect to squared error loss is a non-decreasing function of T
In the sequel, we study the probability of selecting the best as a function of §: to get
the minimum sample size # which guarantees (3.2). For this purpose, let £ (x| D=Fny
(x|%) denote the cdf of non-central ¢ distribution with #—1 degrees of freedom and
non-centrality parameter A.
Lemma 3.1. The procedure (3,3) satisfies the following inequality.
P, {selecting the best|fsy >0k~ +A%, a<Oi<b i=1, -, k}
Sinf {7 Pl ARG D] VeSS v (0-0)
where A= vV uA*
Proof. The result follows from the stochastic ordering property of F(x|2)in 4
Lemma 3.2. Suppose that H(x, 2) satisfies the following;
(1) For fixed 2, H(x, )<0 for x>0 and H(x, )>0 for x <0,
(2) H(x,2) is non-increasing in 2 for fixed x.

Then, there exists 4, such that

{7 Peeld He Dda=0  for A<,

and

(" P12 Hex Ddx<o for 2> A

unless the left sides of the inequalities are either positive for all 2 or negative for all 2.
Proof. Since the pdf of non-central distribution has the monotone likelihood ratio

property in 1, F(x}A)/F(x|4) is non-decreasing in x for 2,<{4. Thus, it follows
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from the properties of H(x,2) that, for A; <A,

S:F *2(x]2) H(x;Apdx
=L IO PG -2 H, 1
éck—zSTka—z(x},l,) H(x, )dx

gch—zgf Fe2(x| ) Hx, A)dx

where ¢c=F0]2)/F(0]2)>0.
ThuS, for /.{1 </{2,

{7 Pr2|a) Hex, 2)dx <0
implies
§7Frel ) Hex, 2dx <o
Therefore, the result now follows by taking
To=inf (4; " Fre2(e| 2 H(x, Ddx <o)
Lemma 3.3. Let
ID={" Pt (1D dF (x12+0),
Then, -d%—l(l) changes the sign exactly once from + to — as A varies from —oo to
oc ; In particular, 70;— I(AD) <0 for A>0.
Proof. Dencting the pdf of F(x|2) by f(x]|2), we have
A IR = =D Fre D (e 14 8) -2 F x| D — el )
A Fexl 2ty
=c{” P2 D) Hex, Ddxjexp(a+8)
where c=c(n, k,A) does not depend on 1 and
H(x, 2 :{{"g(u, ) (Vo — v u) (470D _pdssTGoDY dy dy
with
gt )= Y ap)™ e-* W21 ax{iTD T
Since H(x, 2) satisfies the assumptions of Lemma 3.2, ”a_f{,l— I(2) changes sign at most
once from + to —: Furthermore, it can be easily shown that

H(x,0)—H(—x,0) <0 for x>0.
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Hence,

[—[%— I(Z)Lo:cg:{F“'z(xIO) H(x, 0)+F*2(—x[0) H(—x,0ldx

<c { s (—x10) =~ F2x |00} H(=x,0)dx
<0

which implies the result.
The next result follows from Lemma’s 3.1, 3.2 and 3.3.
Theorem 3.1. In order to guarantee (3.2), the smallest sample size # in the procedure

(3.3) should be chosen to satisfy
min ([~ FeiCe] vE@)dF(x] v ia+ VaAY,

(7 Proia] v (p=a)dF (x| v ab) >1-a. €X)

In many practical applications, a is likely to be positive, i.e., the associated fraction.
defective is less than 0.5. In such a case, the minimum of the left side of (3.4) is the

second member by Lemma 3.3. Hence, in practice, we only need to find # so that
{7 ot v -am) dFGlVaD=1-a (3.5)
For simplity, we consider only the case a>0 in the remainder of the discussion.
As in Section 2, the large sample solution of (3.5) easily follows from the fact that,
for large n,
sinh-( 7'/ ¥ 2 )~N(sinh-1(8:/ ¥ 2), 1/2n).

In fact, the large sample solution of (3.5) is given by

= [% {in( b«A*If{/\;ﬁA*)z )+ 3.6

where d is the solution of
(" o1(xtd) do(x)=1-a

The values of d can be found in Gupta, Nagel and Panchapakesan (1973) for selected
values of £ and a. Also, we have wirtten a computer program to evaluate the left side
of (3.5) which can be used to find the exact solution. We have run this program to
see the accuracy of the approximate solutions given by (3.6). For example, consider the
case with k=2, b=2, A*=(.6, 0.8 and a>0. The follwing result shows the values of
n by (3.6) for nominal 1—a=0.90, 0.95 with the actual values of 1—a computed by

our program. The values of 1 are moderately large, and it shows that the approximate
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A* n nominal | actual “ A* n ‘ nominal actual '
0.6 37 0.95 0.948 0.8 20 0.95 0.949
23 0.90 0. 898 12 0.90 0.894

solutions are sufficiently accurate for practical purposes for moderately large #.

(Received May 1982; Revised October 1982)
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