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自己 相關減法에 의한 雜音音聲의 改善된 LPC解析

Improving LPC Analysis of Noisy Speech 
by Autocorrelation Subtraction Method

*은 종 관 (C. K. Un)
**최 기 영 (K. Y. Choi)

ABSTRACT

A robust linear predictive coding (LPC) 

method that can be used in noisy as well as 

quiet environment has been studied. In this 

method, noise autocorrelation coefficients 

are first obtained and updated during non­

speech periods. Then, the effect of additive 

noise in the input speech is removed by 

subtracting values of the noise autocorrelation 

coefficients from those of autocorrelation 

coefficients of corrupted speech in the course 

of computation of linear prediction co­

efficients. When signal-to-noise ratio of the 

input speech ranges from 0 to 10 dB, a 

performance improvement of about 5 dB can 

be gained by using this method. The proposed 

method is computationally very efficient and 

requires a small storage area.

I. INTRODUCTION

Linear predictive coding (LPC) is being 

used in many applications of digital speech 
processing and coding, such as speech band­

width compression systems and speech re­

cognition systems. Since the early 1970*s,  

it has been studied extensively by many 
researchers. In recent years, as a result of the 

extensive study coupled with the rapid pro­

gress in large-scale integrated circuit (LSI) 

technology, many practical systems that use 

the LPC technique have been implemented.
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Although the LPC technique is the most 

attractive speech analysis method known to­

day, one serious problem is that in noisy 

environment the prediction coefficients ob­

tained from LPC analysis cannot represent 

the true vocal tract information. When the 

input speech is noisy, values of LPC co­

efficients become severely altered from those 

obtained from clean speech [ 1 ]. Accordingly, 

the spectrum of the vocoder synthesis filter 

becomes distorted, and this results in de­

gradation of synthetic speech quality.



46 韓國音■學會誌1巻1號(1982)

To reduce the degradation effect, a variety 

of methods have been proposed [2] - [ 10]. 

Sambur has proposed an adaptive noise can­

celling method in which clean speech signal 

is estimated from the values of the signal 

delayed by one pitch period [2]. In a 

different approach, Boll, Preuss, and Berouti 

et al. proposed independently spectral sub­

traction methods which are basically the 

same [3] - [7]. In these methods the estimate 

of spectral magnitude of noise is subtracted 

from the spectral magn让ude of the noisy 

input speech. In addition, Sambur, and Lim 

and Oppenheim proposed also independently 

methods based on the concept of Wiener 

filtering [8], [9].

In this paper we present a method of 

reducing the effect of additive wh辻e noise 

in LPC analysis. This method is effective, 

yet requires less computations and a small 

storage area as compared with the above 

mentioned approaches. Our approach is based 

on the autocorrelation subtraction method 

originally proposed by Un and Magill [10], 

and is formulated conceptually in the time 

domain. Unlike other methods in which the 

effect of noise is removed directly from 

input speech in the spectral domain, the 

proposed approach computes autocorrelation 

coefficients and corresponding periodograms 

(i.e., Fourier transforms of autocorrelation 

coefficients) of additive noise and corrupted 

speech, and then removes the effect of noise 

by subtracting periodograms of noise from 
those of corrupted speech. The proposed 

method is inherently related with the auto­

correlation method of LPC analysis, and 

can be implemented easily in the existing

LPC vocoder system.

Following this Introduction, details of the 

proposed method are given in Section II. In 

Section III the performance test procedures 

of the proposed method and the test results 

are discussed. Finally, conclusions are drawn 

in Section IV.

II. LPC ANALYSIS WITH REDUCTION 

OF NOISY EFFECT

in LPC analysis of speech, a speech sample 

s(mT) at a discrete time t = mT is linearly 

predicted by the past p samples as

A P
sS) 드 £(瞄 f ), (고)

XT

where s(m) is the predicted value of s(mT) 

or s(m), and {ajJ are the prediction co­

efficients. The error between the predicted 

and real speech samples is given by

r(m)= 5 (m ) - £ aKs( m -k ).
K = 1

(2)

When one uses the autocorrelation method 

of LPC [12], minimization of the prediction 

error energy results in a set of simultaneous 

linear auto-correlation equations

p

W'k Rss( i-k)=Rss(i)，

i = 1, 2 ,…，P ,

(3) 

where

N亠 I i I
Rss( i) = £ 5 (m) ■ s (所+ |i| )• 

m = o

(4)
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If the input speech signal s(m) is corrupted 

by additive noise n(m), the corrupted signal 

may be expressed as

x(m ) 주 s(m) + n(m).

Then, the autocorrelation coefficient Rgs(i) 

is changed to be Rvv(i) as
xx (5)

/V 1- Hl
Rxx (l)= E x (m ) X ( W + HI X 

m 0

=Rss( i)+ Rm (i) +

(i) + R 庭Ji),

where

Re(l )=
N 1시汀
E 

m ..0
H (m} (执 + i))

Rs 71 ⑴—
jn

S (m ) 〃(执 + i )

and

Rns(1)= 2丿
m -：o

n (m ) S ( m + 1 ) •

Clearly, if we have Rxx(i) instead of Rgs(i), 

the resulting prediction coefficients 

would be changed significantly. Therefore, 

our main concern is to determine the auto­

correlation coefficients such that the effect 

of noise in the coefficients is as small as 

possible.

If we assume that the input signal and the 

noise are uncorrelated, both Rsn(i) and Rns(i) 

become zero. Then, we have from Eq. (5)

Rss(i ) = Rxx( i) - Rnn (I ),

(6)

that is, autocorrelation of clean speech may 

be obtained by subtracting autocorrelation of 

noise from that of corrupted speech. One 

problem is that noise autocorrelation co­

efficients Rnn(i) cannot be obtained directly 

from noisy speech. However, if the noise is 

assumed to be quasi-stationary, Rnn(i) or 

corresponding noise periodogram Inn( 3Q can 

be estimated and updated during non-speech 

periods. Then, the estimation of Rss(i) is 

obtained as

Es (i)= Rxx( i) - Rn,i (i)

⑺

where "A" indicates the estimated value.

Before proceeding further, let us consider 

estimation of noise periodogram 

which is given by

N ~i
^nn (⑴k)= S R/n? ( i ) ~iwki

i N

(8)

If the stationarity assumption is satisfied, 

we can use the noise periodogram that has 

been estimated once during an initial cali­

bration period. However, since the noise 

statistics is in reality time-varying, it is desir­

able to update the periodogram as frequently 

as possible. One possible method is to update 

it during non-speech periods. In this case 

detection of pause or speech activity is 

required. Of course, discrimination of speech 
and pause in noisy environment is a difficult 

problem. In this work we have used the 

following method:
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(1) If the energy of the current analysis 

frame exceeds a preset threshold level 

Efh，speech activity is assumed to exist 

and Inn(u)k)given by (8) is not updated.

(2) Let the periodogram of corrupted 

speech samples x(m) be Ixx(w^) which 

is defined by

N- 1
【xx(아()=、R" ( 1 )e % 

i--N

(9)

If the energy is less than and 

【xx°"k)of the current frame is less 

than the latest e아imate of Inn(Wjc), 

we replace Inn(^k) by Ixx(wk). If 

【xx(3k)is larger than Inn(^k)but 

less than fo호 five consecutive frames, 

we replace Inn(uj^) by the smalle아 

value of【xx3k)s computed in those 

five consecutive frames.

(3) We apply half-wave rectification to the 

resulting Inn(w^) in either of the above 

cases.

Although the proposed method of estimating 

sequence may not exist when it becomes 

negative. To overcome this problem, we 

modify the autocorrelation coefficient with­

out adhering strictly to (7) such that its 

corresponding real time sequence exists, 

thereby guaranteeing stability of the synthesis 

filter formed by the resultant coefficients. 

For that purpose we make use of the fact 

that, if the periodogram of the modified 

autocorrelation is positive for all frequencies, 

the corresponding real time sequence exists. 

The periodogram Iss(u>k)of a sequence s(m) 

may be written as

2 n '
Iss (緋)二卜了 17“气 s (m12

2
= R「S I ( 아( ) I 2 ,

(10)

where S(uj^) is the discrete Fourier trans­

form (DFT) of the sequence s(m). Igs(u}^) 

can also be written as

noise periodogram is simple, we have found 

that it yields satisfactory results.

One should note that, by using the above 

algorithm and modifying the autocorrelation 

coefficients as shown in (7), it is possible to 

get a set of prediction coefficients that 

yields an unstable synthesis filter. It is well 

known that stability is always guaranteed 

in the autocorrelation method of LPC 
analysis.1 However, if we modify the auto­

correlation as shown in (7), the resulting 

autocorrelation may not be a true autocor­

relation, that is, the corresponding real time

1 . However, in practice roundoff noise can cause

o N - 1
［拓"*)= 备£ Rss(i)e"%'・

(11)

It can be seen from (10) that Iss(u)k)is 

always non-negative. Hence, if a periodogram 

is always positive and symmetric, there exists 

a real time sequence whose absolutely squared 

DFT is equal to its periodogram.

Now, to obtain a set of prediction co­

efficients that yields a stable filter, we do as 

follows. First, we compute and

【xx(3k)definded by (8) and (9), respectively. 

Then, we have
instabili t“
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?SS (이3 ) = 0 (3态 ) — Irm ((앗)，

if Ixx (이b ) 纟 Inn( )

0 , otherwise ,

(12) 

from which we can obtain Rss(i) by inverse 

DFT.

The above procedure requires a large num­

ber of computations, bee죠use one mu아 

compute N [N is the number of samples in 

one analysis frame] autocorrelation co­

efficients. In addition, one must compute 

DFT and inverse DFT (IDFT) of the auto­

correlation sequence. To reduce the number 

of computations, we note that, since only 

M+l (typically 10 to 14) autocorrelation 

coefficients are needed in LPC analysis, one 

can consider only this number of coefficients. 

This amounts to applying a window to 

autocorrelation coefficients. We have studied 

several different windows and decided to 

use the following cosine-tapered window：

W(i)= 1

扌 U+cqs ”
\

M丄 I i I 4L,

(13)

where M and L are typically 10 and 16, 

respectively. The window function is shown 

in Fig. 1. This window does not alter the 

values of the first M correlation coefficients, 

but tapers off (L-M) coefficients. It is de­

sirable not to alter the values of the first M 

correlation coefficients by windowing, because 

they are used in getting LPC coefficients

W( 11

Figure 1. Con sine tapered window.

and thus altering them can cause undesirable 

effects. Note that in the case of clean 

speech its periodogram can be less than zero 

because Fourier transform of the cosine- 

tapered window can have negative values. 

This problem can be avoided by setting a 

threshold level such that autocorrelation is 

modified only when the input SNR is lower 

than this level.

(Oil

Figure 2. Procedure of modifying autocorrelation co­
efficients of noisy speech in LPC analysis.

Fig. 2 shows the proposed method of 

reducing the effect of noise in computation 

of prediction coefficients. Although in this 

figure computations for windowing and FFT 

are shown to be done separately for cor­

rupted speech x(m) and noise n(m), only a 

single window function and FFT subroutine 

are actually needed. Effect of noise on the 

correlation coefficients is subtracted off in 

the spectral domain. The result is half-wave 

rectified with proper threshold setting and 

then converted by inverse FFT to the desired 

autocorrelation coefficients Rgs(i). Here we 

use a threshold to avoid instability that may
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be caused from the round off errors in the
N"顶二 I). 5 5 N .

course of computation. The remaining pro­
cedure of computing the prediction coef­

ficients [吋 is the same as the conventional 

LPC method.

III. PERFORMANCE TEST OF PROPOSED

METHOD AND DISCUSSION

To test the performance of the proposed 
*

LPC analysis method, we have used an LPC 

distance measure and a frequency weighted 

spectral distance measure. In addition, we 

have used the same distance measures that 

have been time-averaged with energy 

weighting. These measures are briefly des­

cribed first.

A. LPC Distance Measure

The LPC distance measure first proposed

by Itakura [13] is defined by

J 시 = ' 以
Ar RA

RA

(14)

where A denotes a column vector of linear

prediction coefficients under test and Ac 

denotes a vector obtained from clean speech,

that is,

A --- ( 1. 1 , &2,…，〃材)厂

Ac 二( 1,缶 I, de；,…，)r

R is an (M+l) x (M+l) autocorrelation 

matrix of clean speech and Ne^ is the 

effective sample length of one analysis frame. 

When Hamming window is used, we have

[14]

B. Frequency Weighted Spectral Distance 

Measure

Various types of the frequency weighted 

spectral distance measure have been considered 

by several researchers [15] [ 16] [17], In 

this work we have used a measure that is 

similar to the one proposed by Viswanathan, 

et al. [15]. Denoted by D2, it is expressed 

as
S HZ"") Hog Bc (舛必)一 
k

D 2 •-------------------------------------

£ M) 
k

Ior H (c

----------- (15) 

where Bc is LPC spectrum obtained from 

clean speech and B is the one under test. 

The use of weighting function Bc(e-'GJk.) is 

justified because human ears are more sensi­

tive to the changes in spectral peaks rather than 

in valleys.

C. Energy Weighted Distance Measure

In addition, we have used an energy 

weighted distance measure that is defined as

L 서--1
E 1( £ DZJ

/ 顼 끼 o
D 3 =-----------------------------------------

L M -1
£ £ S； (m)

l 0 m = Q

(16)

where L is the total number of analysis 
frames, s^(m) is the speech sample of 

the frame, and is the distance measure 

of *h  frame, The use of this type of the
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distance measure can be justified since it is 

reasonable to assume that the distortion in 

a frame with lower energy has less influence 

on quality than that in a frame with high 

energy.

With the distance measures defined above, 

we have tested the effectiveness of the 

proposed LPC analysis algorithm that mini­

mizes the noisy effect. Real speech band­

limited to 3.2 kHz and sampled at 6.8 kHz 

was used as the input signal. To obtain noisy 

speech, we added white Gaussian noise to 

clean speech. In the LPC analysis we used the 

following parameter values:

Window length (Ham- _ 

ming window)

37.65 ms

Overlap length 17.65 ms

Frame length 20 ms

Number of LPC 10

coefficients

Number of non-zefo points 32

of FFT and IFFT

51
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Figure 4. LPC distance measures: (a) noisy speech 
(10 dB) (b) modified speech. [The reference 
signal is clean speech.]

Fig. 4 shows LPC distance of noisy speech 

with SNR of 10 dB and that obtained with 

the proposed analysis method. In this figure 

the larger distance means the more spectral 

distortion with respect to the reference signal

Figure 3. LPC spectra of (a) clean speech (b) noisy 
speech (10 dB) and (c) modified speech. '

Fig. 3 아lows LPC spectra of clean and 

noisy speech and the LPC spectrum improved 

by the proposed method. From these figures 

one can see that the proposed method makes 

a definite improvement of spectral distortion

(b)

Figure 5. (a) Energy weighted LPC distances (b) Fre­
quency weighted spectral distances with 
energy weighting. [The reference signal is 
clean speech.] 
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(i.e., 아ean speech). One can also see from 

this figure an improvement resulting from 

using the proposed method. In Fig. 5 the 

time averaged measure of LPC distance DI 

and that of frequency weighted spectral 

distance D2 are plotted. It is seen from this 

figure that, when SNR of the input signal is 

in the range of 0 to 10 dB, the spectral 

degradation is improved by 5 dB or more, 

and that the performance improvement be­

comes better as the input SNR becomes 

lower. Figs. 6 and 7 show the LPC distances 

when the input noise power changes from 

frame to frame. In Fig 6 the input SNR 

is changed from 5 to 10 dB, and in Fig. 7 

it is varied from 15 to 10 dB. Here we have

used the algorithm of updating noise periodo­

gram discussed earlier. As can be seen from 

these two figures, ju가 after the change in
BOOr

5dR 一 iO(i0

10 20 30 40 50 60 70 80 90

NUMBER OF BLOCKS

Figure 6. LPC distance measures when input SNR is 
changed from 5 to 10 dB： (a) Noisy speech 
(5 dB —10 dB) (b) Modified speech. [The 
reference signal is clean speech.]

SNR, the performance is not improved or 

even more degraded momentarily, but be­

comes improved gradually.

Finally, let us consider the computational 

requirement of the proposed method. It 

requires computation of autocorrelation, FFT, 

and inverse FFT (IFFT). For autocorrelation 

切0 .
I "" - -，■■■' !"!

'사 I

'I .

: \ 1 I

•長" 1 ;l

: I I : I ' \ : I

ME .
o :.

Figure 7. LPC distance measures when input SNR is 
changed from 15 to 10 dB： (a) Noisy 
speech (15 dB——>10 dB) (b) Modified 
speech. [The reference signal is clean speech.]

of length of 16 (L=16), our algorithm re­

quires computation of autocorrelation co­

efficients slightly more than what is normally 

required in the conventional LPC analysis 

method. Since the input signal is real, com­

plex computation is not needed in FFT and 

IFFT. In our algorithm the number of 

multiplications required for processing one 

frame of speech samples is about 1,440. In 

addition, about 1,600 additions are required. 

Hence, one can conclude that real time 

computation of the proposed algorithm is 

quite feasible.

IV. CONCLUSION

We have studied linear predictive coding 

in noisy environment and proposed a method 

to reduce degradation caused by additive 

white noise. The approach is based on sub­

traction of autocorrelation coefficient of noise 

from those of corrupted speech after esti­

mation of noise periodogram during intervals 

of non-speech activity. By using the proposed 

method, one can improve the performance of 

an LPC vocoder by about 5 dB in SNR. The 

proposed method is computationally very 
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efficient and requires relatively small storage 

area as compared with other existing 

algorithms.
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