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Abstract

The problem of parameter identification for multivariable stochastic linear systems from output

measurements, which are corrupted by noises, is considered.

A modified Luenberger’s input/output canonical form is used for reducing the number of unkn-
own coefficients. A computationally and conceptionally simple systematic procedure for parameter
estimation is obtained using output correlation method. The estimates are shown to be asymptot-

ically normal, unbiased and consistent.

Numerical examples are presented to illustrate the identification method.

1. Introduction

System identification has recently received much
attention in the fields of engineering, economics,
statistics, and the physical sciences.

The same problem is variously described as a
“modeling problem™ or as a “time series analysis”
problem. Even though the terminology differs from
one field to another, the basic methodology is very
often the same.

The problem of system identification consists of
three stops: model selection, parameter estimation,
and model verification. A suitable model must be
selected for the final identification objective, which
may be the design of a control strategy for the sy-
stem, the simulation of the system, or the prediction
of the system response. The unknown parameters of
this model must then be identified from measurement
data obtained from the actual system. Finally, to see
whether the estimated model is adequate for the
final objective, a model validation test must be
performed on the estimated model.

*Ew R:ASk Tk BRIEM g - I
“E @ A:ERX TK ERTEH KERA
R AT 19814 124 26

A number of approaches to the identification pro-
blem have been proposed in the control literature.

Mehra®’
single input single output state space model with

investigated this problem assuming a

fixed and known structure. Sardis and Stein‘® dev-
eloped stochastic approximation algorithms for linear
stochastic system identification. The maximum like-
lihood estimation of the coefficients of multiple
output linear dynomical - systems was discussed by
Kashyap*>.

One major difficulties in the extension from the
single output case to multi-output case is the choice
of canonical forms. A canonical model of multivari-
able systems was introduced by Mayne. Tse and
Weinert* considered stochastic multivariable system
identification with unknown structure. Parameter
identification using least squares algorithms was
discussed by Hsia®®

Baram and Sandell” solved consistency problem
of linear system identification. Suen and Liu‘®
investigated structure determination of multivariable
linear systems.

The main concern of this paper is the parameter
identification: more specificially, the parameter ide-
ntification of multioutput stochastic linear systems
from output sequences which are corrupted by noises,
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under assumption that structure indices are estimated
by,

Computationally and conceptionally simple param-
eter identification method for multivariable stocha-

stic linear state space models is presented.

2. Statement of Problem

Consider an n-dimensional linear time-invariant
system represented by
X(&+1) =AX(E)+ Bulk) (1a)
Z(B)y=CX(k)+v(k) (1))
where X(k)eR",Z(k)=R™k=1,2,3,:--and A,B,C are
constant matrices conformable to X,Z.u,R is real
field, and [Iis identity matrix.
We assume that
E{u()} =0, E{u(u(j)}=1I1;
E{v(@)}=0, E{v(d)v(j)'}=Q0d:;
E{u()v(5)} =0,
E{z(:),v(j)*}=0, for all 7 and j
Let 6={A4,B,C,Q}, suppose
1) The matrix A is nonsingular and stable i.e. all
eigenvalues are nonzero and lie inside unit circle.
2) The system is completely controllable and obser
vable®,
rank(B,AB,..., A" 'Bl=n
rank(C*, A'CY,...,(A"" Y Ct ) =n.
3) The I/0 sequence {Z(k)},{«(k)} is identifiable
a% - or roughly speaking, it contains all the
information of system(1).

system has reached a steady state.

The objective is to estimate # using measurement
data Z¥={z(1),=z(2),...,2(N)}, and the identifiab-
ility condition was discussed®’~4¥,

A block diagram of the identification scheme is
shown in Fig. 1.

3. Canonical Forms for Identification

One of the most difficulties in the multivariable
system identification is the choice of canonical forms.

In this paper, a modified Luenberger’s®®-“® /0
canonical form was used“®.

Given a finite dimensional linear system of order
n having m outputs z and r inputs «, and the sys-
tem matrices A,B,C, then it is always possibie to
construct an equivalent system having as A matrix,
A* given by

A¥=TAT'=(A;;), £,j=1,2,...,m
01 0 ... 0

A= 0 0 1 ... 0 2
(n; X n;)
@it Qiiz Gifa o oo Cifni

(n‘AX“n T) ..................... L, i>j @

ijy oe.  Qiing
where T : observability matrix
» ¢ structure index associated with ith input
and Gupta and Fairman®® prove that
=0, E>n;+1 ‘

4) The identification scheme is started after the =0, k=n;+1 and i<j “4)
v(k)
N
u(k) x(Xk) z(k [
— 3 by Delay c Identifier [ ™
A

Fig. 1. A block diagram of the identification scheme
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Consider the rows of the obsarvability matrix in
the following order:
C1

1 ClA
CIA."{1
Cud®at
where C; is the
structure index, C;A": is linearly dependent on the

T= 6]

ith row of C. Since #, is the

vectors in all proceding rows of (5).
And

m
2 m=n
=1

From the definition of #;, there exist a unique set

a;jx, such that for 7=1,2,...,m

nj—1

c,.A".-zjg'; > annCidt, if n>0
i-1 "j~1 6)
C;z%i gamHC;A‘, if 7;=0
Then the rows of canonical form of C is construa-
cted as follows
C*=(0,...,0,1,0,...,0], >0
where C;* is ith row of C* which is canonical
form of C, and the 1 in C;* is in column 147+,
Feony 20y, and
CH*=[as11y+,Bi1n1s@iz1sr-r Tiznty- -
@ it im0 05 e e vy 00, 72=0
Let B* be canonical form of B, which has no
special form, then the elements of B* are uniquely
determined by Z=,

4, Estimation of System Matrices

Let P denote the covariance matrix of the states
in (1) and define
R(B)=E{2(:)z(i —k)} Q)
An expression for R(%) can be easily obtained
from (1)

R0)=CPC*+Q ®

R(E)=CA*1S, for £>0 ©
where

P=E({X()X'{))=APA'+ BBt ao

S=APC* [¢8))

Let r;;(k) denote the Z,jth element of R(k) and §;
denote the jth column of S, then (6) and (7) imply
rii(ni+8)=C;A%A'S;

—53 —

i m—1 .
33 2 GirnCiA A8 >0

= o1 w1 - . (12)
§53 8 huniC A 18,0
where ¢=1,2,... Using (9) again yields
¢ w1
32 30 auirihtt), 50
rulm )= i-1 m-t a3

;1 § @itk -+1),7,=0

]

Now for the case /=1, (13) becomes
-1—1
r.~,~(n.-+t)=‘§ Ginrrifk+E),t=1,2,... a4

For ¢=1,2,...,7,(14) is equivalent to the matrix

equation
r=90,(n)a, 15

where

r'=0rym+1),..., #;2n)]
' =[a111y00ey Fi1nr)

ru()  ry; @)

Oy k)= ri;(2) ;03

R T.())
ver 7mi(k+1)

(k) ri(k+1) o.. 7 (2R-1)
Gantmacher®” showed that ¢,(k) is always nonsi-
ngular for 2<z,. Thus # can be estirﬁated by testing
the singularity of @,(%) for i=1,2, ..., n,+1®,
We now turn to the estimation problem. Let R(%)
denote an estimate of R(E). Then using the ergodic
property of z(¢), a reasonable estimate for R(k) is

RB=3 23 =)= —B) (16)

It was shown that R(k) is an asymptotically unb-
iased, normal, and consistent estimate of R(%). Thus
4, is estimated easily under assumption that #,==,

2,=0,"(n)#, an
where &, is strongly consistent estimate of a;.

For /1=2,3, ..., m, a; is computed an analogous
manner. For example, if /=2, write (13) for t=
1,2, ..., n+n, as

r:=0x(n2)a, asy

where

rof=0ry(n+1D), ..., 72;2ny+2n)

a'=0as1, ..y @Quai, Gz, oy @2za2)
@,(n,)
D(B)=|""""
BT ot o @)
rlj(”1+2) rli(2n1+1) :
r1i(m+ ) r15(2n + k=1
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2j (1)
755(2)

ro4(k)
ray(k+1)

ry(n+k) ...
4, is estimated from
A
L=, ()7, a1

d, is strongly consistent estimate of a,.

r2i(n,+2k—1)

The procedure continues in a similarmanner until

éni——-n, then canonical form A and C is obtained.

5. Estimation of Noise Covariances

Using the above procedure, we can estimate A
and C. In this section we shall describe an algorithm
for estimation B and @ while assuming that A, C
and R(%) are known exactly.

A number of approaches have been suggested in
the literature. We describe here an approach similar
to H, and Kalman®®,

Begin by constructing #m X #m Hankel matrix A:

R(1) R() ... R
H= R(-2) R(3) R(n+1) 20

R(#) R(n+1) R(2n-1)
where
R(k)=CA*PC*, k>0
H can be writen as
H=DW 1)
where
CA
D= - J, W=[PC', APC, ..., A" 'PC"'}
CA™

Both D and W are of rank # by virtue of the
ohservability and the controllability conditions,

Therefore, one can find wm X 7m nonsingular mat-
rices E and V such that;

1,

ED= [ ...... } 22)
0

and
WV=(ZL:0) 23)
Then E and V reduce H to a diagonal form.
I, : 0
EHV=ED WV= [..b... .0 ¢2))

The determination of E and V is as follows; for

example, write

BESEE F3R FHo5W 19824 51

such that D, is #X# nonsingular. Then choose
14 -1 : 0
E= | ceevesseerinnisiacnnennnans J (25)
\—ED,D;7': E,
where E, is any nonsingular matrix.
H, and Kalman show that

I,
C=(I,:0) HV[ ...... J 26)
0
[ Iﬂ
PC'=(L,:0 ) EH - J o
HL 5 @n
Moreover
P=APA'+ BBt 28)

We can obtain B and P from eqs(27), (28) using
iterative method(19, 20]. (see appendix)
Then Q can be obtained from (8)
Q=R(0)—CPC* )]

6. Numerical Examples

In this section two examples are given to illustrate
the identification scheme shown in sections 4 and
5. All computing was done’in Fortran [V on IBM
360 digital computer.

Example 1: This example is a single-output four
dimensional system taken from Mehra®’, which has
the following parameters; .

0 1 0 0
0 0 1 0
0 0 0 1
-0.656 0.784¢ —0.18 1.0
B=( 0 10 0 1.0 )
C=( 1 0 0 0
Q=0.25

The eigen values of A are —0.4+;0.8 and 0.9+
j0.1. They are all located inside the unit circle i.e.
stable.

Output data were generated from (1).

A=

First, the dimension was estimated by testing det
erminant of ¢,(%), then we can obtain #,=4.

A dimension of 4 indicates the following structure
for the matrices in (1) :

01 0 0
0 0 1 0
0 0 0 1

Q111 A1z Gus G

'———[ by by by by ]
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C=(1 0 0 03
Q=q
Next, we can estimate R(%), #=0, ..., 8 from
(16), then a; can be obtained from (17).

Table 1. Parameter estimates for example 1
Estimates
Parameter True Values
N=1000 N=3000
am —0.7475 —0.6791 —0. 6560
ans 0.9357 0. 7960 0.7840
ans —0.1586 —0.1328 —0.1800
Qs 0.9090 0.9608 1. 0000
b, 0.0 0.0 0.0
b 0. 9230 0.9252 1.0
bs 0.0 © 0.0 0.0
b, 0.9125 0.9127 1.0
q 0. 2788 0.2296 . 0.25

5 10 15 20 25 30 35 40 45 50

X 100
—— Number of Measurements

Fig. 2. Estimated vaiues of @, versus N

Using these values, B was obtained from (27) and
(28), and was obtained from (29).

These values obtained from 1000 measurements
and 3000 measurements are shown in Table 1.
And the estimated values of a, versus N are plotted
in Fig. 2.

Example 2 : Consider a four dimensional three
output system. The actual values of A,B,C and Q

are
/0 .0 0 0
|
A:]—os .0 0 0
|0 0 0 1.0
L—1.0 —4.0 —0.25 0.0

— 55—

B=( 0 1.0 0 1.0)
1.0 0 0 0\
c=[—1.0 —-3.0 0 0 ‘
0 0 1.0 0 )

0.25 0 0
Q=[ 0 0.5 0
0 0 0.25
The structure indices which can be obtained by’

are; n,=2,n,=0, #;=2.

Thus A,B,C,Q have the following structure:

0 1.0 0 0

A= @ G 0 0

0 0 0 1.0
Q311 Q312 Q331 Q332
Bi=(b, b by b,
1.0 0 0 0
C=|a: au. 0 0

0 0 L0 o0

¢ 0 0
Q=0 g2 0

0 0 gs
Table 2. Parameter estimates for example 2

Estimates
Parameter . True Values
N=1000 N=3000

m —0. 4847 —0.5058 —0.50
2112 1. 0401 1. 0392 1.00
@ —0.9443 ~1.0430 ~1.00
Qs —3.1656 —2.9867 —3.00
Qa1 —1.6386 —1. 3409 —1.00
@312 —3. 3989 —4.0306 —4.00
@sa —0.3238 —0. 2660 —0.25
@3 0.1815 —0.0342 0.0
b, 0.0 0.0 0.0
b, 1.2327 0.9127 1.0
b 0.0 0.0 0.0
b, 1.2435 0.9273 1.0
@ 0.3327 0. 2835 0.25
q: 0.6237 0.5528 0.5
g3 0. 3207 0.2786 0.25

The estimates obtained from 1000 measurements
and 3000 measurements are shown in Table 2. And

the estimates versus N are plotted in Figs. 3-4.
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7. Conclusion

In this paper, we considered the problem of para-
meter identification for multivariable stochastic lin-
ear systems.

A simple identification method for multivariable
linear systems was presented and shown to converge
to the true parameter values, as the number of mea-
surements increase.

Our method need not the large computational bu-
rden, comparing with maximum likelihood approach,
but we can obtain the relatively accurate parameter

values.

TEREXE F31% F 58 1982 5

This method can be applied to the continuous sys
tems.

Appendix

Let P(nXx) be a symmetric positive semidefinite
matrix satisfying the set of relationship
PC'=(G (AD
P=APA'+ BB (A2)
where G,C are #Xm,m Xz matrices respectively and
A is nX»n stable matrix.
To solve this problem, we define an equivalent
optimization problem;
min J=ir((PC*—G)(PC'—G)") (A3)
with respect to B subject to constraints (A2). It is
easily shown that

J=33 20 (P~ (Gl

The solution to this optimization problem can be
writen easily in terms of an X symmetric matrix
A of Lagrange multipliers for (A2). Adjoiting the
constraints (A2) to the performance index J, we get
a modified performance index

J=tr((PC'—-GYPC'~G) ] +tr(MP—APA'—BB"))

=tr([PC'CP—-PC'G'—GCP+GG*+AP—AAPA!
—~ABB) (AD)
The necessary condition of optimality are easily

derived using results on gradient matrices.

2] =pcrc+CicP-GC—CGrr 4
—A'AA=0 (A5)
or
A=A'NA+GH+H'G'—-PC'C-C'CP. (A6)
A numerical procedure for solving these equations
is as follows
1) Pick an initial estimates B, and solve(A2) for
P,. One way of obtaining P, is to solve recurs-
ively for the steady state of the following:
Py(n+1)=AP,(n)A'+B,B,",P,(0)=0 (A7)
2) Solve (A6) for A, using P,. This can be done
by solving till steady state
A+ 1D =A'An)A+(GC+C'G'—P,C'C
—C'CPy), 4,(0)=0 (A8
3) Let
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B,=B,+2a/4,B,
where a is a suitable step size
4) Repeat 1)~3) till convergence is achived.
This procedure is a gradient procedure and will

converge to a local extremum of J.
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