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CONSTRAINED OPTIMIZATION PROBLEMS
IN TRIPLE RESPONSE SYSTEMS

1.  INTRODUCTION

Often in experimental work, the researcher
is called upon to seek the conditions of experi-
mentation which are most desiable, depending
upon some preseleted criterion. Much has been
written concerning the exploration of response
surfaces. Basically, a polynomial type response
function is used to explore the relationship
between a response variable and k independent
variables which is given by

in some region of interest. The mosi frequently
fitted response function is the quadratic model
which gives rise to a fitted response function
of the form

_;J: bot Zjbjx1+ Ejzmbjmxjxm+ Zjbjjx;z' (1 1)

i<m

The fitted second order function in (1.1) is given
in matrix notation by

§=bo+ 2" b+ X" Bxr

Sung H. Park *
Byoung J. Ahn *

where
5 b, bu biasa b
X X2 e b, B bas by s
Xk b sym bru

Here, X is a vector of independent or design
variables and y is the estimated response. The
elements in b and B represent least squares
estimators.

The total exploration following the estimation
of (1.2) often involves finding the stationary
point. This stationary point will be used to aid
in describing the response surface system. The
derivative of y with respect to vector x, equared
to O, gives

-g% = %—[r'b-F ¥Bx] «x
= b+a Bx=0

Solving for X we have the stationary point Xo
given by
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Xo= —B1b/2

If the stationary point falls inside the domain
of approximation of the second order response
function, a Cannonical analysis can be conducted
to determine the nature of the stationary point
and the properties of the system in the region
of the experimental design. Otherwise the Rideg
analysis can be conducted. Discussion of these
procedures are given in Box (1) and Myers (2).

Quite often the researcher is confronted with
the need to simultaneously optimize several
response variables. It is not unusual in this sit-
uation to obtain a solution X, which is optimal
for one response and far from optimal or even
physically impractical for the others. The task
is then to arrive at some comprise conditions
involving the responses. The method which
super imposes response contours to arrive at
suitable operating conditions cannot be well

applied when the number of independent variables
exceeds three. Hence, the purpose of this paper
is to present the theory and develop an algorithm
associated with the exploration of a triple response
surface system.

The approach is to find condition on a set
of independent or design variables which maximize
(or minimize) a primary response function subject
to the condition that constrained response func-
tions take on some specified or desiable values.
A method is outlined whereby a user can generate
simple two dimensional plots to determine the
conditions of optimum primary response regard-
less of the number of independent variables
in the system. The approach described in this
paper is similar to that of Myer [3) which presents
an algorithm associated with the exploration
of a dual response surface system. In some point
of view, the approach of Myers is the generali-
zation of that of Draper (4).
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II. THE TRIPLE RESPONSE PROBLEM

Let us suppose that the experimenter has a
primary response with fitted response function
given by

o= bo+ 4 b+ 2" Br 2.n
and what we shall refer to as two co: straint
responses with response functions given by

ys= co+x'c+x'Cx
¥q= do+x'd+xDx (2.3)
The expression in (2.2) and (2.3) may have been
When
the constraint response is the cost variable in
a yield-cost study, the coefficients in (2.2) and
(2.3) need not be random variables. The solution

obtained from the same experiment.

proposed and discussed in the sequel is to find
the conditions on x which optimize yp subject
to g5 = k1 and yg = ko, where kj and ky are
some desiable or acceptable values of the con-
straint responses.

Using Lagrangian multipliers, we thus consider

L="bo+x"b+ 2" Bx— tlco+ 2'c+ 2" Cx—k,)
—r{do+x'd+x"Dx—K,)

and require solutions for x in the set of equations

oL
ox 0

This results in the following :

(B~uC—7D)X=1/2(uC+'yd~b) (24)

It is important at this point to study the nature
of the stationary point generated by equation
(2.4). We begin by considering the matri, M
(x), of second partial derivatives, the (i, j) element
of whichis (37L/a xia xj) (i, j=1, 2, -+K).
It follows that

M(x)= 2(B —uC —+D) 2.5)

Let’s define yp, i ¥g jand Uq, i as following:



o= bo+ 2, b+ x; B,
Usa=co+xjct x,Cx,

Yau=do+ x,d+ % Dx,

Theorem 2.1: Let x| and x9 be distinct solu-
tions to equation (2.4) with some fixed value
w using y] and vy respectively. Let 951 = V52
and 41 = §g,2. If the matrix (B — 4C — v, D)
is negative definite, then i’p,l > ’}\’p,Z- If the
matrix (B — uC — 71D) is positve definite, then
9p,2 > 9p.1. In addition, if (B — xC — ;D)
is negative definite, (B — uC — 72D) can not
be negative definite.

Proof: If x; and x, give rise to the same value
of the S'q, then

dot xid+ 2 Dx, = dot 274 xiDX, 2-6)
Consider now 9p 1 — S’p,Z. We calt Write

ﬂp.l'!}p,zzx:Bxlﬁx;sz“‘(I:*x”b (2 7)
By adding and substracting (.u; Cx.+ %2 D%),  we
obtain

@ﬂ/ﬁ“ @p&

=1 Bxy — 3 (B—uC— % D) 2, — g0 Cx,— 1 %3 D,

+(xi—x3)b (2-8)

From (2.4) with v = 1, and x = x,;, we have

2 Bxy = gy Cxy + %21 Dxy + %/uf c+ -%71 x{d——%—x{ b

which from (2.3) becomes

2 B, = Y yqu — 1do— % 2 d+ g2 Cx, -+ -%ux{c+—1f7| xd

) (2-9)
From (2.3) we also have
%z de, = Niyer— Hdo— nxd. (2-10)
Hence, from (2.9) and (2.10) it follows that

x{ Bx, — %2z D,

= ‘%h xnd+ nxad— %—x,’b%—;m’ Cx, + —%—,wcl'c

Thus, (2.8) becomes sy — s

== (tn—2) (B—uC—nD) (xi—x) + uGer — iis.)
=—{(n—x) (B—uC—%D) (x—x) (2-11)

Which is postivie if (B — uC — r, D) is a negative
definite matrix and negative if (B—uC—r D)
is a positive definite matrix. Equation (2. 11)
also indicates

@p.x—ﬁp,z = (xl_xz) ’ (Bfﬂc“ " D) (xl 'xz)

which implies that while (B—uC--r, D) is negative
definite, (B—uC—y 2D) can not be negative def-
inite.

Theorem 2.1 indicates that in the quest for
values of x which yield constrained maxima
(minima) we can limit ourselves to values of
v which make (B-—uC—yD) negative definite
(positive definite) with some fixed value . as-
suming that such values exist. It shall be dem-
onstrated that this working region in v does often
exist and that its location depends on the nature
of matrix B, C and D.

2.1 Positive definite case

Suppose that D is a positive definite matrix.
Consider the quadratic form with matrix given
by M(x), ie, q = W (B—uC-—D) W where »
is some fixed value. Since D is symmetric positive
definite, there exists a non-singular matrix S
(Rao (5) such that

S (B—uC) S=diag (A, A 5 &)

and S’DS = I. Performing transformation

W =v’g
we have
q = Vidiag (A,—r, A,~r, -, A,—r)

(2. 12)
The a’s are mearly the eigenvalues of the 1eal
symmetric matrix



T=D,(—1/2)Q (B— 10) Q D,(—1/2) (2-13)
Here Q is the orthogonal matrix for which
Q'DQ = Dy (2.14)

and D, is the diagonal matrix containing the
eigenvalues of D. We use the notation D,(-*%)
the
reciprocals of the square roots of the eignevalues
of D. From equation (2. 12), it is clear that
we can insure a negative definite M(x) if v > A,

to denote a diagonal matrix containing

(positive definite if y < r,) where A" n, . .,
Ay are the eigenvalues of the matrix T arranged
in ascending order. In what follows, it becomes
apparent that this indeed defines the working
region for y when 4 is fixed. In fact, any vi>A
yields x; which gives rise to an absolute maximum
S'p,i (absolute minimum for y; < }\1) conditional
on being on two response surface given by i i
and yq . It turns out that by choosing some fixed
¢ and r values in this region on generates x’s
which give desiable value of ¥ and q-

Theorem 2.2 : Let x be a soluticn to (2. 4)
where D is positve definite and y is fixed. Then

N2
9Ya

ay —
only in the limit as u approaches +

0 with the equality holding

Proof:  Differentiating both side of equation
(2. 3) and (2. 4) with respect to r yields

a!;q oy ox ’ _aka 215

a7 = 7 + 2z D 37 { 5)
and

(B—uC— D) 95 = Fd+ Da. (2 -16)

Upon taking the second partial in (2. 15) and
(2. 16) with respect to v, one can write

azl}q ' x i 9% x ax’ ad ,
=d/_“ 4 X I} .
372 52 +2| 2D 3 -+ 3 “_‘,}T (2-17)

_15_

'y

57

(B—uC—¥D) =2D

Yy

(2-18)

Upon premultiplying (2. 16) by ( 2%x'/3+*) and
(2. 18) by ( a4/ar ) and subtracting the result-
ing eauvations we find that

1, 3x_,oax dx i 9
2(1 af—zayl)a—y—‘xl) oy 2 -19)
Substituting the expression for | d’—?;?x | from

(2. 19) into (2. 17) results in

_ai?iqu; 2y’ _ox
EXa 3y ay

D

which, of course, is greater than zero except
when (ax/ay) = 0. From (2. 4) and (2. 16)
(ax/3y) = O only in the limite as y approaches
either plus or ninus infinity.

The theorem 2. 2 is useful in obtaining an
understanding of the relationship between the
Lagrangian multiplier v and §, when 4 is fixed
The relationship between v and ¥, is of the
form illustrated in Figure (2. 1) In the figure,
Yo,q is the value of the estimated constraint
response function at its stationary point. The
existence of the asymptotes is easily seen since
from (2. 4).

rimooxx ~D'd/2=1x,, where yuis fixed.

As v approaches A, (i=1, 2,
infinity since

.- k), y. approaches

| B-pC--AD| = 0 (i=1,2, -,

Figure 2.1 — Plot of 9 q against v with fixed ..



Theorem (2. 1) and (2. 2) indicate the working
region for v resulting in a maximization of Yp,
subject to specific values of y; and yq is v > 2
and v < a, for minimization. Hence, the pro-
cedure of determing operating conditions is

Step 1. Fix the some value of u.

Step 2. Find the working region of 5.

Step 3. Evaluate ¥, ¥5 and y, with fixed
w and various y in the working
region.

Step 4. If the constraints are not satisfied,

choose another 4 and go to step 2.
Otherwise stop.
Note that in this procedure whether C is definite
or not does not matter. Numerical example of

this procedure is given in the section 5. 1.

2.2 Negative Definite Case

Suppose that D is negative definite and
C is negative definite or indefinite. In this case,
in order to render M(x) negative definite, and
thus find x values from (2. 4) which maximize
9, subject to constraints on ys and y,, we are
led to choosing values of v with fixed » which
are smaller than the smallest elgenvalue of T.
On the other hand, if our desire is to minimize
yp. we find conditions by choosing larger
than the largest eigenvalue of T.

Theorem 2. 3 : Let x be a solution to (2. 4)

where D is negative definite and . is fixed. Then
2% 4g

—5:7 =0 with the equality holding in the

limit as r approaches +<.

Proof: The proof is similar to that of Theorem
2.2.

Hence, the procedure of determing operating
condition is similar to that of the positive definite
case except step 2.

In case C and D are indefinite, it is impossible
to use this approach, because we can not find
a working region for v which makes M(x) definite.

III. SOME SPECIAL CASES

Let us suppose that ys and y, are of the linear
form given by

@p: bo+x,b+ 2’ Bx

i{s =Cy + .rl C

Yo=do+ x'd
then it is the quadratic programming. Hence,
it can be solved by Wolfe’s Algorithm or Hil-
dreth’s Algorithm (see (6] (7).

Let us suppose that c is zero matrix.
Yp=bo+2"b+ 2 Bx (3 1)
@szco'{”xlc (3 29
Yo =dy +x'd+ x'Dx (2 3)

This solution proposed is to find the conditions
of x which optimize y, subject to linear form
¥s = ki and Quadratic form y,; = k,, where
k; and k, are some desiable or acceptable values
of the constraint responses.

Using Lagrangian multipliers, we thus consider
Le=bo+ b xt 2’ Bx—pulcg+x'c— k-

and require solutions for x in the set of equations

oL

ox

=

This results in the following :

B D) x= 5 (et yd—b) (3-4)
Consider the matrix, M(x) of second partial
derivatives, the (i, j) element of which is
(8'L/ox ia xj) (i, j=1, 2,-+K)
If follows that

M(x)= 2(B — D).

yidyt X'd 4 2" Dr—ky)



By similar idea in the previous section, we
can find the working region for y (see table 3. 1)
resulting in an optimum of y,,, subject to specific
values of 35 and y,.

Dposive | Dnegative

definite definite Dindefinite

if B is negative

maximize y >1, y <2, definite,
¥ _1 1
p T, <y < b

if B is positive

. definite,
minimilze ,y < l X Y > kl( 1 < < 1
¥ P

A, lz,"',AK are ll,lz,"',lxare

*
eigenvalues of T eigenvalues of T
arranged d in arranged in

ascending order. ascending order.

Table 3-1. -The working region for 7
i) T= D2(‘l/2) Q'BQ Dz(‘l/’)

Here, Q is the orthoqonal matrix for which
QDO = D, and D, is the diagonal matrix
containing the eigenvalues of D. We use
the notation D,(*) to denote a diagonal
matrix containing the reciprocals of the
square roots of the eigenvalues of D.

i) T*=D,(%) p’DP D, ()

Here, P is the orthogonal matrix for which
P'(- BJP = D; and D, is the diagonal matrix
containing the eigenvalues of —B and D, (-*)
contains reciprocals of the square roots
of eigenvalues of —B.

Hence, the procedure of determining the operating
condition is

Step 1. Find the workding region for 4.
Step 2. Take a v in the working region and
find u that satisfies 3, = k.

Note that u is uniquely determined by (3. 4) and
(3. 2) if such value exists.
Step 3. Evaluate i/p and @q using v and 4.
Step 4. If the constraint is not satisfied,
go to step 2. Otherwise stop.
Numerical example of this procedure is given
in the section 5. 2.

IV. NUMERICAL EXAMPLES

5.1 Definite Case
Consider a triple response surface problem

where ¥, ¥ y,  depend on three independent

variables %, x and x,. The region of the experi-
ment on each variable is given

“lx o1 (i=1,2,3)

The following three response functions were
obtained from a set of experimental data.

9p=65.39+49. 24, +6. 36x, +5. 22x, —7. 232} - 7. 7615
—13. 11x} — 13. 68, x, —18. 922, 2,— 15. 162, x4
Us=56.42+4. 65x, +8. 392, +2. 56x,—5. 23.4 -- 4. 37x}
11,1125 —13. 68,2, 18. 922, 2, — 15. 521,25

§¢=59.374+2.53x, +2. 47x, +5. 622, +5. 252 -+ 5. 6223
44,2223 48. T4y, + 2. 322,25 + 3. 782, ¢

The goal of the investigation is to determine
operating condition which maximizes y, but
also we require 62 S ¥ = 64 and 60 = i;q < 62.
Recall that the matrix T is given by T = D,(-*%)
Q'(B—uC)QD, ().

Dy i =[0.3078 0 0

0 0.5302 0

0 0 0.0105
0.6428 -0.3497  0.6816 |

Q= 0.6938 -0.1115 -0.7115

0.3248  0.9302  0.1710



i) 1=2.0
0.5639 1.5286 1.1688]
T

I

1.5286 0.2733 0.9651
1.1688 0.9651 -4.2438

with eigenvalues of T being (2.8960, --0.7346,
—4.5684).

iii) =00

-2.0339 -1.4099 -0.7713
T=1-1.4099 -1.4564 -1.3896
-0.7713 -1.3896 -1.4859

with eigen values of T being (0.0802 —0.9946,
—4.0618)

80 66
M—*‘HM* L P
60 T 84 \\\
—
62 \
40
60 | ///y/
[
20 . -
g 9T
—
0 e A ———— — o -
/ w56} //_/ 7
e i " Ys
0 / 1 s | /
// L ) | | | |
0 e 4035 -30 —25 ~20-15-10-5 0 5 10 6 65 66 67 o
Figure 5.1 Figure 5.3
i) =10 iv) pu=-1.0
-0.2350  0.0593  0.1987 -3.8327 -2.8792 -1.7414
T=1 0.0593 -0.5915 -0.2123 T=(-2.8792 -2.3213 -2.5070
0.1987 -0.2123 -2.8649 -1.7414 -2.5670 -0.1070

with eigen values of T being (—0.2148, —0.5765,

—2.90)
7% ¢
74 r qu
72 / @3
70 /
68
. 66
64 | /
62
62
60 F—"
_ 60
58 f.—
56 . . . . " . . L o8
68 69 70 71 72 73 74 75 76 77 78
Figure 5.2
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74

72

70 +

68

64

67

with eigen values of T being (1.5862, —0.5615.
—7.2857).

Ya
Lo -
Ys

68 69 70 71 72 73 74

Figure 5.4



v) u=-2.0
[-5.6316 -4.3484 -2.7L15
T— [—4. 3484 -3.1861 -3.7444

-2.7115 -3.7444  1.2720

with eigen values of T being (3.4079, —0.3560,
—10.5975).

80 -
’V Ys
- \

76 b \

66 \ \\
64 \
.
\}

5 55 56 57 58 5% 60 61 62 63 64 65
Figure 5.5 Yo

60

58

Note that the method to determine u is trial-
and-error method. After above procedure has
been done with various values of u. Figure 5. 5
gives the values of the estimated response, y, =
63.01, ¥ = 62.15 and y; = 60.30 at the co-
ordinates, r, = —0.47, r, = 0.86and », = —-0.31.

5.2 Some Special Case
Consider a tollowmng response surface

problem where ¥,, ¥, and ¥ depend on three
independent variables x,, x, and x . The region
of the experiment on each variable is given by

0sn=10, ~1025,<10, -L0=x=1.0

The following three response functions were
obtained from a set of experimental data.

§,=191.39+4+9. 24x,+ 6. 392, 4 5. 222, — 7. 232} - 7. 7623
131122 —13.68x,x, — 18, 922,25 — 15, 462, 14

5= 254. 42+ 4.56x, + 8. 931, + 2. 652
Fa=D56. 42+ 4. 65x, + 8. 391, + 2. 652, + 5. 252 + 5. 62}
44,2245 48. Tdxy 2, +2. 322 %, + 3. 782325

The goal of the investigation is to determine
operating condition which maximizes 3, but
also we require

204<§,<208 and §;—198

The eigenvalues of D are (10.553, 3.557, 0.979).
Recall that the matrix T is given by T = D,(%)
Q’BOD;" 2’

0.3078 0 0 0.6428 0.6938 0.3243
=/ 0 0.5%2 0 -0.3497 -0.1115 0.9302| BOD,
0 0 0.0103] | 0.6816 -0.7115 0.171)]

—1.4100 —1.4566 —1.3899
_—0.7715 —1.3899 —1.4861

(f2.0338 —1.4200 —0.7715]

with eigenvalues of T being (—4.0617, -0.9945,
0.08017).

220 |
215 |
210 + /
205 +

200

Figure 5.6

Figure 5. 6 gives the values of the estimated
responses, j = 16.3, ¥s = 198 and §, = 207.9
at the coordinates, », = 6.7, x, = —9.9 and
x; =0.3.
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V. CONCLUSION AND REMARKS

The algorithm associated with the exploration
of triple response systems was given in Chapter
2. In that algorithm, it was not clear how to
choose a proper Lagrangian multiplier u by trial-
and-error method. But it was possible to choose
a proper u by tracing a locus of 3 at the various
values of u, since the relationship between the
Lagrangian multiplier 4 and uq at any value of
u is known.

In Chapter 3 3, was in linear form and thus
u was uniquely determined by equation (3. 2)
and (3.4) after the working region of v was cal-
culated.
easily found by generating simple two dimensional
plots.

In case matrices C and D are indefinite, feas-
ibility check method was used. The fact that
the number of independent variables in the system
is restricted would be the weakness of this ap-
proach. Since the shape of the contour system

Hence, the optimal conditions were

in the estimated feasible region can be shown,
it is useful for the users to understand the response
systemn.

The method presented in this paper involved
optimization of one response variable subject
to constraints on the remaining response vari-
ables. Often, however, the goal may be the
attainment of the best balance among several
(13)
presented a disirability function approach to
His paper illustrated how
several response variable could be transformed into
a disirability function, which could be optimized

different response variables.  Derringer

solve this problem.

by a univariate technique. The problem involving
the simultaneous optimization of several response
variables without primary response function

deserves further study.
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