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ABSTRACT

A stress-strength model is formulated for s of k systems consisting of identical components. We con-
sider minimum variance unbiased (MVU) estimation of system reliability for data consisting of a random
sample from the stress distribution and one from the strength distribution when the two distirubtions are
Weibull with unknown scale parameters and same known shape parameter. The asymptotic distribution
of MVU estimate of system reliability in the model is obtained by using the standard asymptotic properties
of the maximum likelihood estimate of system reliability and establishing their equivalence. Uniformly
most accurate unbiased confidence intervals are also Obtained for system reliability. Empirical comparison
of the two estimates for small samples is studies by Monte Carlo simulation.

* This work was supported in part by the research fund of the Ministry of Education, Korea Government, in 1980,

** Department of Computer Science and Statistics, Seoul National University.

-3 -



I. INTRODUCTION

Let the random variables X, 00+ - Yo
be independent, F(x) be the continuous cumu-
lative  distribution function (cdf) of X, and
G(y) be the common continuous cdf of Y, ,
i=1,...,k This paper concerns optimal point
and interval estimation procedures for the pro-
bability function (1. 1) Ry , = Prob (at least s
of the Y, .., Yy, exceed X;)

k
=3} £ 6@ 6@ taF ()

assuming that F and G are Weibull distributions
with unknown scale parameters and same known
shape parameter. And also assuming that inde-
pendent random samples X,, .. ., X , and Y,
.., Y, are available from F and G, respectively.
This problem originated in the context of
reliability as extension to multicomponent systems
of the stress — strength model whose single com-
ponent versions have been considered by Church
and Harris (1), Enis and Geisser (2] and others.
Suppose a system, with k identical components,
functions if s(1 < s < k) or more 6f the com-
ponents simulaneously operate. In its operating
environment, the system is subjected to a stress
X, which is a random variable with cdf F. The
strengths of the components, that is the min-
imum stresses to cause failure, are independent
and identically distributed random variables
with cdf G. Then the system reliability, which
is the probability that the system does not fail,
is the function R k given in (1. 1). “The par-
ticular cases s = 1 and s = k correspond, respective-
ly, to parallel and series systems. ‘Typically,,
the components are mass produced and the
data on strengths Y,, . . ., Y, can be generated
from laboratory load tests on a random sample
of the components. Also, the data of stress
X, . . - X,; can be obtained from a simulation
of conditions of the operating environment.
A strong point in favor of component testing

is that the data may be used for inference on
the reliability of any s out of k system.

Several different systems may be considered
at one time and the same data used to draw
inferences about the resulting system reliabilities.
This feature is very important at the design
stage and it contrasts markedly with the situation
where a completed system must be constructed
and tested for each contemplated choice of
s and k.

In the present paper, we derive optimal infer-
ence procedures for the reliability function R,
k under the parametric model of Weibull dis-
tributions for F and G with the same known
shape parameter.

In section 2, we consider minimum variance
unbiased (MVU) estimation of the system re-
liability in a multicomponent stress — strength
mcdel.

In section 3, the asymptotic distribution
of the MVU estimate of the system reliability
in a multicomponent stress — strength model
is obtained. And comparison between the max-
imum likelihood estimate (MLE) and MVU
estimate of the system reliability in the model
is given.

In section 4, the uniformly most accurate
unbiased confidence intervals are also obtained
for the system reliability of the model.

In section 5, the comparison of the biases
and mean squared errors (MSE) between MVUJ
estimate and MLE for small samples is studied
by the Monte Carlo simulation.

In section 6, we provide some remarks and
indications of possible future work in this paper.

I. MVU ESTIMATION OF R, ,

We first derive a convinient expression for

the reliability R '\ jntrodced in (1. 1) for (F, G)
having a relation of the form
1 1

<
2

1-F) % = (1-¢)®



where F and G can be taken to be Weibull dis-
tributions with known shape parameter c. We
then proceed to obtain MVU estimates of R
k when one or both of «, and a, are unknown.

Letting A=0af/af and

Tw)=[B(sk—s+1)] [z (1—x)* *dz,

the expression (1. 1) yields

koo 1\; 2 l K-t
2-1) Rs.k=fol§7(l;)<bv/\) (\1_UA) du
e
= S A) du
1 B{s+ A k—s+1)
B B(s, k—s+1)
(2. 1) is equivalent to
e o (k—s)! k e
22 Ra= 1 B [}L("*”]

Using a partial expantion for the product of re-
ciprocals in the right hand side of (2. 2), we
obtain following an alternative expression which
is useful in our subsequent analysis:

(2:3)  Rsx=1—|B(s,k—s+1)]}

=1 (59 (s A
=0
Henceforce, we assume

Flx)=1—exp{— (g x) <,

Glx) =1—exp{—(@mz)}, 0< x<Co0

and consider first the MVU estimation of re-
liability for the case when a; and a, are both
unknown. Let 2F (a, g; v; x) denote the hyper-
geometric function of the second kind which
is defined by

F('}’) _/‘oitBAl

rerir—g
c(1=)" e (1—tx) ~9dt

(2'1) 2F1 (mﬂ:)’:x) =

y>B>0;x<1

Further, we shall write < a > to denote the

to be

integer part of a, and a sum f,
=

a, is

interpreted as O if the lower limit m éxceeds
the upper limit n.

Let X, ..., X,,and Y,,... Y, bein
dependent random samples from F(x) and G(y),
respectively, and let A = a| [ a5 In order to

derive MVU estimate R; , of R, , we first
consider MVU estimation of the parametric
function ¢ (A) = (a2 + A)! where a > O isa

given constant. A simple unbiased estimate of

¢o (A) is given by g (X; Y,)=al I(aX;>Y,)
where I is the indicator function of the ser which

appears in its suffix. Since F and G are Weibull
distributions which are exponential families,

then T, = =1 Xy and T =, Y, are complete

sufficient statistics. Hence, we use the Rao —
Blackwell theorem (5) and the Lehmann — Scheffe
theorem (6], MVU estimate ¢ of ¢ (i) is the
conditional expectation & = E (g(X;, Y, /
Ty, T,). Writing W, = X; /T, and W, - v/,
we have that (Wl, W,) is independent of T and
has probability density function.

(25)  flwy walty 1) = (m—1) (m—1) (1 10,)m2
S (1—qp,) ™2
0<w <1, =1, 2
Let V="T,/T,, Then da=a'P(W,<aVW,|T,T,)
For the case av<l,

Go=a Ji' [ flwn, yl Toy To)dy duy
= (1= (m=1) fo (1—aVie))™ ' (1~ uy)
(1—10,) ™ daw, ]
—a ' [1-2F (1—m, lin ;aV}]

(2+6)

In the same manner, for the case aV > 1,

f(xv W | Tl) Tz)clx dw,

—a [2F (L= n, 1 ims =1 |

27)  do=a f"lflw

av



Expression (2. 6) and (2. 7) together provide
the MVU estimate of ¢ (1). Finally, from
(2. 3) we note that 1-R;  is a linear com-
bination of the parametric functions ¢s(A),
a=s, . .., k. Substitution of the preceding results

in this linear function and simplification yield

(2:8)  Rex—1—[B(s,k—s+1)]"
7 k
J S -1

(Bev(59 e
'{I‘ZFI[l*’nhl;"l;(s"‘j) v
+5 0 (F ) (s
2F1[1—m, 1in;(s+j) 'V,

where rn=<minlk—s, V'—s >

and r;=<max(0, »+1)>

In practice, when computing ~Rs,  form (2. 8)
one can use tables of the hypergeometric function
provided the arguments involved lie within the
range of the avilable tables. For n, > 1,n, >
1, the first arguments are negative integers in
which case, the 2F; function reduces to a finite
sum (3, p.8). For example

2:9  2F1(1-m, lin;x) =

where a“=1, d''=alatl) -
Therefore, computation of ﬁs x can also be
accomplished through summation of finite series-
es. But, for large sample sizes, it would be quite
laborious to compute. Then we look for a reason-
able approximation and the asymptotic distri-
bution of R, , will be investigated in section 3.

Now, we consider the MVU estimate of R;
for the case when «, is known and a, is un-
known. This corresponds to a situation where
an extensive simulation experiment or physical
theory is available which provides almost com-
plete information about the stress distribution.

LetY,,...Y

n be arandom sample from

tistic for of .

Gly) =1 —exp{—(aqy)

So that T = Ei ¥¢ is a complete sufficient sta-
Taking g(Y,) = al exp ( —af /)
as the initial unbiased estimate for ¢, = (a+>\)"]
and as same method in the case when a; and
a, are both unknown, the MVU estimate R},

of Ry | is obtained as

k-s

R¥=1—[ Bls,k—s+1)] 14#; (1)~ )
“(sHj) " M[1ims - Taf (s+j) 1}

(2-10)

where the confluent hypergeometric function
of the first kind is defined by

Ty ~_F(7) "laa 1! Toa- tx
M(a; y;2) = T I'lr—a St v 1—1) e
M. ASYMPTOTIC DISTRIBUTION

Here, we investigate the asymptotic distribution
of ‘lis y for the case when both «; and a, are

;unknown. The results for the case of known
a, are completely parallel and are therefcre
omitted. To derive the limiting distribution

of ﬁs « directly from (2. 8) it is tedious because
of its complexity. To circumvent this difficulty,
consider the standard asymptotic property of
maximum likelihood estimate (MLE) of R,
and then establish its asymptotic equivalance
with R, .
first order correction term for removal of bias
of the MLE.

The MLE of (¢, a2

In this process, we also obtain a

) is given by

|

=1

™ A,
™ c
X

=1

C —

Now, we write R, for the MVU estimate given
in (2. 8) and R, for the MLE of R, , where
n = n; + n, is the combined sample size. By
the invariance property of MLE and (2. 2), the
MLE stk of Ry , is obtained as



(31)  RPy=1—{(k— )1 [ B(s k—s+1)]"
L G+ 1)
where /)\,,=nl% Ye /m %Xﬁ)

=1 i=1

The limiting distribution of the MLE is obtained
by the following procedure where £ denotes

. -
convergence in distribution. X x{/m

i=1
is distributed as gamma distribution with parameters

n; and nja;. Then by the central limit theorem

n

20X
i=1 771—
Tm & g N(O,1)
| S
n 2¢
1a|
So,
3-2) o (55 Xe/m—1/af) % N(0, 1/[ct* - 7)
where a/n — yasn — oo, 0<y<1.

As the same method

(3+3) (}: Ye/m—1/af) 3 N(O,1/[ a2 (1— 7]

and, (3. 2) and (3. 3) are independent. Since
A = of /o is a function of «of, with
tinuous partial derivatives, the result 6a.2.6
of Rao (6, p.387] gives

o con-

at Gam 2 & NO, %/ A01—7)))
Note that 1 — R, =1 exp (g(»)) with r = (k-s)!

(3-4)

[ Bls,k=s+1)]" g =3 loglj+ A" and

using the above argument once more, we have

(3:5)  nf (RB—Ren) 3 N0, &b
where  di=[7(1-7)] " (1= Roxl K[ (1401

From (3. 5) we can derive the limiting distri-
bution of MLE lis(:”k.

To derive an asymptotic expansion of the
MVU estimate R, having R‘s"k as the leading
term, we first note that, due to (2. 3)

2

A K-8 - -8
(36)  Ro=1-3 Lod, Riv=1-3 1, v,
L=[Blsk-s+1) 7 (=1)7 (*5%), anc §

where

and U® are the MLE and the MVU estimate of
v, =@+ x)'l, respectively. Since the coeffic-
ients g are fixed constant irrespective of the
sample size, it suffices to show the
between ¥, and & asn=(n; +n,} — =, n,/
n - v,0<y < 1and for a fixed a.

Theroem 3-1: Let Z, . = an,/(n,A,) where

rzlation

~ 72 c c

An Ty ,ZJ. Yi/(n, i=1 Xi). Thenas n=(n,+n,)
~ = such that n;/n = 7y + onYH,0< y <1,
we have with probability 1

(3-7) =Tt Ut O(n)

where

(3:8)  Usn—=a [ Zén(m/n)*— Zgn(m/n)* |

[ Zanlne/n) + (m/n) ]

Proof: We consider first the two leading terms
in an asymptotic expansion of the integral

Gramy(2) = (m—1) fo (1= 2u0) 7 (1— ) ™7 duw
for0<z< 1andn=(n, +n,) — e such that

nl/n-—-y,0< v < 1. Expanding

by 2) =[(n,—1)/n] log(1—zw) +[(m—2 /n|
log (1— )

about w=0 and considering exp (n h, (w,z)),
we have

eo—m 1 11 m (242
I A
m [Z(m/n)+ (m/n) ] 1
+2 s +0(d)
where  8,= (m/n) z+ (m/n).

The same analysis also provides an expansion
of 6,2, a1 (1/2) and these expansions are uniform
in a neighborhood of points Z, in 0 < Z, < 1
and 1 < Z, < =, respectively.

From the expression (2. 6) and (2. 7), we
note that the MVU estimate ¢7 of ¢ is given
by



(3:9)  Ur=a"[1—¢nm(aVa) | for aVn=1
=a" [@n (1/aVn)] for aVa>1

By the strong law of large numbers,

]

™

X5 /m

B N Y19

Yi/n, ™

3| T

aVn=a

!

L=

with probability 1 as n — =. Recognizing that

a1 (2 gyt B - et

where X is the MLE of A and simplifying this
expression, this theorem is proved.

Now, we consider the relation between R,”
and R, Let U, _ ¥ We have
from (3-6)and 3-7) "

Us + j,n’

(3:10) R&%= RM— (1/n) Ut 0(n ")

By the strong law of large numbers, Z, || &.5.
ay (AM(1—y))t 2sn — = which implies that
U,, converges to a finite constant and, hence,

that ,? (R —RZ) 232 0 thus the limiting

distribution stated in (3 - 5) for RJ% also holds

for R®, since R is unbiased for Rax the term

L

7 Un in (3-10) provides an estimate of the first

_. order correction term for bias in the MLE.

1V. CONFIDENCE INTERVAL

To derive a confidence interval for the reli-
ability R;, given in (2- 1), we first note that
24Ty and 24; T, are independent X, with 2n,
and, 2}"2 degrees of freedom, respectively, where

T,- % X and T, =3 yc  Using the method
i=1 =1
in comparing the ratio of variances of two normal
populations in Lehmann (4, P. 170), the con-
fidence interval for A = o /of can be obtained.
let

(4-1) W, =2a{ T\, Wy=20 T, ,

and

4-2) W=W,/(W,+W,)

Then the uniformly most accurate unbiased ac-
ceptance region for W with confidence coefficient
1—a is given by

{4-3) a<W<e

Let W = Y/(1+Y) where Y=W,/W,. Since (2n,)
Y/(2n,) has F distribution with degrees of free-
dom 2n, and 2n,, the distribution of W is the
beta distribution as following:

T (m) wh ! (1—w)™ !

where 0 < w < 1. Using the conditions (5) and
(6) in Lehmann (4, P 161), the relations

Ciyary Nz
EW) - m+ n.
and
_ .
w B, (W) = psapny By, ,n,(u)v

we can obtain the following equation

(4-4) S Bpyn, (w0) die= [ Buyayn, (0)du=1 -2 »

From (4. 4) we can determine ¢, and ¢,

By the relations (4 - 1), (4 - 2) and (4 -3). the
unbiased (UMAU)
confidence interval for » with confidence coef-

uniformly most accurate

ficient 1- o is given by

(1“‘02)

C2

T,

L o
T1 < /\'\

i _ A=) To _~
@s) A= oL L3

with (4. 4).

The equation (2. 2) shows that R is a mono-
tone, strictly increasing, function of the param-
meter A which we denote explicitly by Ry
(x). From monotonicity in » and (4. 5) the
UMAU confidence interval for R x (1) is given
by

(4'6) RSJ(N <iRsm(D < RSJ(M.

A one-sided UMAU confidence interval for

Rsk is obtained in the similar way from the



one-sided interval for a.

Here we note that neither the MVU estimate
nor the MLE of system reliability is useful in
setting the UMAU confidence interval.

We also remark that the components are
tested in unassembled form rather than as a
completed system, the confidence statement
(4. 6) holds simultaneously for all s and k. These
simultaneous confidence intervals based on in-
formation on components are useful for selecting
the form of the system.

V. EMPRICAL COMPARISON
SAMPLES

IN SMALL

The large sample theory presented in section
3 shows that the MVU estimate and the MLE
of Ry y given in (2. 8) and (3. 1) are asymptotical-
ly equivalant.

Now, in this section we investigate their relative
=5 n =5
This cor-

performance in small sample n,
through the Monte Carlo simulation.
responds to a situation where the sampling cost
is very expensive.

Estimates of the mean squared error (MSE)
and bias were obtained from 5000 trials for
the two out of four and one out of three systems
with A = 2, 3, 4, 5, 6.
consisted of generating 10 uniform (0, 1) random
. .., 10, and their trans-

In each situation a trial

numbers, i.e. RN;, i=1,
forming to X; = — log (RN;),i < 5,and Y; = —x
log (RN;). i = 6,7, ... 10. From these, the
value of the MVU estimate ﬁs,k was obtained
using (2. 8) and (2.9) and the value of the MLE
ﬁs,k from (3. 1).
computed from (2. 2) for each.r, s and k. The
results on the estimated MSE and bias appear
in the following Table 5. 1.

The true value of R.. was

Table 5. 1. Estimates of Bias and MSE: n, =n,=§

Reliability Bias Mear
squared error
(s,k) A Rgw | MVU MLE | MVU MIE
(1,3) 2 .90000 | -.00130 —-034002 | . 01442 .014«’{(:‘“
3 .95000 . 00005 027831 . 00636 . 00784
4 .97143)  .00020 . 02204 | .00289 . 00434
5 .98214 00162 —-. 01613 . 00124 . 00226
6 .98810 ) —.00039 ~—.01460 | .00095 00184
(2.4) 2 .80000 | —.00279 —. 03146 [ .03027 92491
3 .88571| —-.00391 —.03637].01838 .)1750
4.92857 | .00242 -.02950 [ .00937 .11046
5.95238 | ~.00094 ~.02912(.00626 10791
6 .00040 | —.00040 - .02482{.00414 10569 |

Although MVU estimate R_ is known to be
unbiased, its estimated bias is recorded as a check
on the computations. In Table 5.1, the MSE
of both estimates appear to be nearly equal,
but the bias in MLE is considerably larger than
the bias in MVU estimate.
that in small sample size, the MVU estimate of
R,  is better than the MLE of Ry , .

Hence we conclude

VI. CONCLUDING REMARKS

In the preceding section we showed that the
MVU estimate fls,k of the reliability K, is
better than MLE ﬁs,k in small sample sizes But,
as the sample size n becomes large these are
equivalant. And using the first — order correction
term Uy in equation (3.10), we can reduce the
error term between R  and R .

We conclude by remarking that the strong point
of component testing that the several ditferent
systems may be considered at one tim: and
the same data used to draw inferénces about
the resulting system reliabilities. And i1 this
procedure, the confidence statement in szction
4 holds simulataneously for all s and k, and
this is useful for selecting the form of the svstem.

In this paper, we investigate the case when
the stress and the strength have Weibull distri-



butions. But it can be considered when the two

vice versa. This subject destribution and vice

have not the same distribution, for example versa. This subject deserves further consider-
the stress has a Weibull distribution and the ations.
strength has an exponential distribution and
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FLOWCHART OF THE SIMULATION

START
print;itle\|

/ read k, s, l/ '

I;

no

calculate the true value of Ry, k
using Function IFACT to compute the

K
factorization and SMUL to compute T (A4j)

4

ITR=0
ITR=ITR+1
J
call RAND
to generate the random variates X, i= 1, ,m
J
call RAND
to generate the random variates Y;, i=1,-,n;
+

calculate Rs, k
using Function HG2 to compute 2F, (a, 8 ¥: X)

and [FACT

@
\
calculate Rs, k

using Function IFACT apd
SMUL to compute _"frs (A+1)

”°®

yes

compute Bias and MSE of Rs, k and PAQS‘ K

4

print Bias and MSE of
ﬁs K and I:/isY K




