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PROPERTIES OF RIEMANNIAN SPACE WITH PROJECTIVE
CURVATURE TENSOR

By M.D. Upadhyay and A.K. Agarwal

0. Introduction
Let us consider an n(n>2) dimensional Riemannian space V, with Weyl pro-
jective curvature tensor Pf iz given as follows ([2], [4])

”

" s
©.1) P =R~y iR, R
(0.2) Pl =0

Then V, is called the projective symmetric space. Where (,) denotes the
covariant differential.

The space V, is called Projective recurrent or Projective birecurrent respec-
tively if it satisfies [4]

b
(0-3) Fiir, I:KIP?jk ’
or
h h
0.9 Piit, mn=%nLija

where K, and @, are called vector and fensor of recurrence resp. Gupta [2]
has shown that in a projective space (#>2) the scalar curvature R is constant,
that is

(0.5) R =0

so that in an Einstein space, we have
(0.6) R =0,

since R; = %g’_j.

Contracting for % and % respectively in (0.1), we get
©.7) P =Pl =Fl=0

From (0.1), we also have

7 R
©.8 P g Pkuk (n—1) (th—'_n—gkk).
Let " be any arbitrary vector field satisfying [1]
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h R
(0.9) v 'Izco_,—l—v B‘,,

then " is called concircular- vector field, where B; and C are some scalar
fields.

1. Projective recurrent and birecurrent space

Differentiating (0.3) éovariéntly and using (0.3), we get

(1.1) 8, =K, +E.E,;
Let

1.2) A,.=a. —a,..
which in view of (1.1), yields

(1.3) 4, =K, K, .

It can be easily verified that a vector of recurrence is gradient then the 2nd
order recurrent tensor is symmetric.
THEOREM 1.2. If the Projective recurrent space P, is an Einstein space, then

8, (the vector of recurrence) is covariantly constant.

PROOF. Differentiating (0.1) covariantly then using B1anch1 identity and
(0.6), we get

(1.4) qu m+P,km J+P:m1 =
Again differentiating (1.4), covariantly and making use of (0.4), we obtain
(1.5) By P e P g 4Py =0
Let ‘
(1.6) V’ def 0
From (1.5) and (1.6), we have
[ %) ﬁmf‘mE B. P!km-rﬁkP'W 3

Comparing (1.4) and (1.7) and in view of (0.3), we say that 8, is a wzector
of recurrence.

Differentiating (1.7) and with the help of (0.3) and (1.7), we can get a
relation as follows

B i h
1.8 By, wPiint8;, uPitm ™ Br, nPim; =0
Contracting for & and % or # and j in (1.8) and using (0.7), we find
B, P, =0,

rn ;m;
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Since P} 70, therefore 8, , =0 _ B SR IR S

THEOREM 1.3. In a projective recurrent space let ihe vector of recurrence be
a gradient then it is an Einstein space. )

*- PROOF. From (0.1) and (0.6), we have

1.9 (P hijk, i ik, mf)+(‘P jhim, ki~ jktm,ih)+l(P Imhi, jk“P Imbi, kj)=0
where we have used the Ricci identity o that , _

(1.10) Ryije, im = B j,mt? T Rjtom, 1~ Rjttm, i) T B, jie~ Rimi, 17 =0+
From (0.4), (1.2) and (1.9), we obtain ) )

(.11 APrije T Anil jan AP 1ni =0

since in an Einstein space P,"-J-k:ijki.
We give here a lemma due to Walker [10] as follows:

LEMMA 1. Ifa - and b, are numbers satisfying s
Bos =03y and Gy br%aﬁr ba+am b5=0,
then either all b, are zero or all G5 GTe Zer0.
Therefore all 4,,=0, because P;;;,70. Hence the theorem follows.

THEOREM 1.4. If the Projective space V, be Ricci-recurrent and I is 7radient
then K*, is also gradieni.

PROOF. In a Ricci-recurrent space, we have [7]
*
(1.12) B =k, B

Let us assume that

(1.13) H:’j:(Ri]'—. ffié )

From (1.12) and (1.13), we get
*
(1.14) i Hr‘j.l:K [ H:’j‘
In view of (0.1) and (1.13), we have
.15 DR, Pl =iy {0 04T+ RO 54— 018,
e ik ik~ (n=1) \“itie"0ullis iSik izgi:‘"}
which in view of (1.12) and (1.13), vields .
*o i
(1.16) U“—K Dy
Using (0.4), (1.2), (1.10), (1.15), (1.16) and also the fact that &, is gradient,
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we can obtain

(1.17) A!m‘Dhué L A D;klmTA'lemiu ’
where Afm:Kim—K:J

since D, jk:Djkhz“ then we have 2all A?m=0, because all D,; j& are mot zero.
Hence the theorem follows.

2. Projective symmetric space
THEOREM 2.1. In a projetive symmetric space (n>2) R;j J‘.=0.
PROOF. Let us consider a tensor V"

(2- 1) V:;k[ Rfjk I+R:lf J+R‘:’kj !+R

ik such that [9]

Jlik =0

which on contraction yields

B
(2.2) V:‘jkh:R? et By TRy =0
Multiplying (2.2) by gij and summing on ¢ and 7, we find
(X)) £V =2R] ~R 4
From (0.1) and (0.2), we get
n
EJ‘ R.. —0.R.
i if. ikl
(2.4 B

Substituting (2.4) in (2.1) and con‘racting the resulting equation on % and I
and then multiplying by g'/, we get

2.5 W s 22 (R R,
which in view of (2.3) reduces to
(2.6) R =
* kj n

Since in a projective symmetric space (#>>2), we have R=constant, therefore
the theorem follows.

COROLLARY 1. In a projective symmetric space

@ Pyt Py i+ Py =0, if
(2.8) Riia? R TRy, J—O is satisfied.

PROOF. From (0.2), we get [5]
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Rgﬁk)

i
(2.9) Puy=—(Ry——

(2.9), in view of (2.8) reduces to (2.7). Hence the corollary follows.

COROLLARY 2. If the projective symmetric space (n>2) admits a concircular
vector field, then the foliowing relations hold.
(2.10)a CPis+84T 8T u

1 ;
=Gi=1) (C8iiPir—C8uR TV Ry 1~ 2Ry 11

(R, —Rgyy) Ri i
(2.10)b CP,+(1-m)Ty=C o v =17
and
o
rs__ _ F
(2.10)c Ty~T, 8" =—CRy~7=153
where
(21Da T;=D;By~D; ;s
and
(2.11)b D}.:CJ-—'CBJ.
also CJ.:C_j.
PROOF. From (0.9), we can write
(2.12) vy 1=C8u+v,Bs
Differentiating (2.12) covariantly and making use of (2.10)—(2.12), we get
(2.13) rJSR;U:D,.g,U.—ng“.
From (0.1) and (2.13), we obtain
1
(2.149) ﬂsP:’.jkszgM—Dkgﬂ-—--———(n_1) (R ;=2 R;p)-

Differentiating (2.14) covariantly and taking account of (2.11)—(2.14), we
find that

1
CPujut 8T jy=8jiTu= -1 {C(gﬂRik ~8uR; )+ (R, ;—v R, :)]
which on multiplication with gij and gm, vields (2.10)b, c respectively.

THEOREM 2.2. In a projective symmetric space (n>2) with a concircular vector
. &
field v, we have

(2.15) vrvsts.,:vrvsPrs' =0 provided the relaiion (2.9) holds.

PROOF. Contracting (2.10)b by giEf and using (0.5), (0.7), we obtain
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.

CR
(2.16) T =—"3

In view of (2.10)b, (2.16), we obtain that Tz-]- is symmetric w.r.t. 7 and J.
Interchanging 7 and % in (2.10)b and then subtracting the resulting egquation
from (2,10)b, where (2.7) is also used, yields

(2.17) VP =Py
or Equivalently
(2.18) vl ij,g:”}L‘kPﬂ, 5

Transvecting (2.7) with o and putting j=s, we.get

(2.19) o’P., =—2°P.

ikys™ is, k*
from which on multiplication by 2’ and changing the dummy indices, we get
ros . Sy
(2.20) v Prk,s_ v P”,k.

From (2.18) and (2.20), we obtain (2.15).

THEOREM 2.3. If the projective symmetric space is an Einstein space, we have

CRg;;
. SHIE
(2.21)a B
and
(2.2)b either C=0 or Priin=0,

PROOF. From (0.5), (0.6), (2.10) and (2.16), we obtain (2. 21)a. Substituting
(0.5), (0.6) and (2.21)a in (2.10)a, we get (2.21)h.

3. Projective Veblen identity

Let us define as follows

@B Uny=Ph P AP P

Pt i Pt P i

ik AT
From (0.1} (2.1) and (8.1), we get
h

A . | 1 e
G2 Uyw=Viu+ =1y 0 R = Ry, 0 +0, (R = Ry, )

¥ Vi ;
; T (Ryj 5~ By, PO Ry =By )
On contraction for % and / and in view of (2.2), we find
; B e i (n—2) e

ijkh
Thus
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=l i
(3.4) Rz'j,k_Rik,j—'——n_g( ,.jk'k—Vijkh).
In consequence of (2.2) and (3.4), we have

h def
@5 W= Pl +Py, AP 4P,

1kj, i ik

han
(5—2) ‘5 Pu’: p+gkaJ’z P g.!n ;_,«k p! grm Iﬂ: P}
i
=V?m B :—g,_T) (&im? bit8an? jti T8 ijk T Ein¥ 18-
The r.h.s. of (3.5) in view of (2.1) and (2.2), vanishes. On the analogy of
conformal Veblen identity [9], we call Wt ijn the projective Veblen tensor and
equation (3.5) projective Veblen ideniity.

THEOREM 3.1. Projective Veblen identity in a Riemannian space and the:
Einstein space are identical.

PROOF. Substituting (0.6) in (3.2), we get

& h
(8.6) U=V ijur
From (3.1), (3.5) and (3.6), we obtain
P p
6.7 g (Pp;, BT ;[;,pgkrrL+P:'jk,pg!m+Plkj,pgim

~ &V wii " Enn? i~ 8wV ije EimV 1) =0
In a Riemannian space ordinary Veblen identity is satisfied therefore (2.6
holds. Thus we have

h
(3.8) U5 =0,

Hence the theorem follows.
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