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A REMARK ON NEW CRITERIA FOR UNIVALENT FUNCTIONS

By Shigeyoshi Owa

0. Abstract
St. Ruscheweyh suggested new criteria for univalent functions and two prob-
lems. In this paper, we shall give the relation between new criteria and

fractional calculus and some results for Ruscheweyh’s problems in a sense.

1. Introduction
Let A denote the family of functions f(z) analytic in the unit disk U= {]z| <1)
and normalized f(0)=0 and f/(0)=1. And let K , denote the class of functions
_f(z)EA satisfying the following conditions
(" Fn ™+
("™
where #ENU [0}. In particular, for #=0 the conditions (1) become

CHORIE
Re{F7c ) > el

Therefore, the class K, equals the class §* (1/2) that denote the class of
starlike functions of order 1/2.

Let f*g(z) denote the Hadamard product of two functions f(2), g(z)E4, that
is,

n-+1

1> 5 e,

W Rc[

D=5 [ e TG+ a8,

|
and
z

@ D“f(z):{w} @ (az-D.

Then, the relation (2) implies

E nﬁlf (n)
® D=Ll

“where #ENU [0}.
With this notation (3) we have that the necessary and sufficient condition for
-a function f{z)EA to be in the class K,=5%(1/2) is
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1

Re{Z2L2 5 L e,
D' f(2) =

the necessary and sufficient condition for a function f(2)EA to be in the class:

K=K is

Re [ ZL2L) > 1 e,
Dfiz) £
and the necessary and suificient condition for a function f{z)&EA to be in the:
class K is
i1 FE)
o) Re | - 1>+ Gew.
D f (z)

Moreover, in the notation (4) also a class K_; can be defined as the family of.
functions f(2)&EA4 satisfyinz the condition
Re[L2) > 4 e
2. The definition D*f(z
In [1], S. Owa dcfined the fractional integral and derivative of order « as:
follows.

DEFINITION 1. The fracticnal integral of order e is defined by

il s f§)as
‘Dz f\»)* Ta) [;) (2—$>]_“-

e

where a>0, f(2) is an analytic function in a simply connzcted region of the:

z-plane containing the orig'n, zni the multiplicity of (z—-g‘“)a’—1 is removed by

requiring In(z—¢§) to be real when (z—§) is greater than 0. Moreover,

f@=lim D% f(a).

DEFINITION 2. The fractional derivative of order a is definad by
S 1 S ds
D r@=—t— 4 Jo & =
where 0<a <1, f(2) is an anal\-’tlc function in a simply cnnnectcd region of the-
z-plane containing the origin, and the multiplicity of (z—2)"“ is removed by~

requiring In(z—¢) to be real when (z—¢) is greater than 0. Moreover,

F@=lim DY f(2)
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and
F(D=lim D f(2.
THEOREM 1. Let the function

f=2+1 0,8 .
Then, for 0<a <l we have
D= gy D@,
D’f(z)=lim D"f(2),
a—{0
and
D F(2)=lim D*f(z).
a—1

PROOF. Tor 0<a<{1, we have from (2)

o N z ) 8 2
D sz-):{ W) *(z—&—ganzﬂ
e (g—1+a)n—2+a)(1+a)
it =17 a7«

On the other hand, by means of Definition 2

g a o 0—1 - y z X/ e o 14
raFay O B IO =gy D (T D e )

= id I'nta) B
=D G DT 0+a) %F
= ®  (p—1+a)n—2+a)(1+a) .
it @11 a4

Therefore, the theorem is established.
THEOREM 2. Let the funclion
f@=z+ 3 a7
n=2
Then, for 0<a<1 we have
— @ p - —a—1
D @D=Fr=ay DT f@
D’ f(2)=lim D% f(a),
a—{
and

p ! f(z):ligll D% f(2).
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The proof of the theorem is given in much the same way as Theorem L.
3. The classes K and K,
Let A denote the family of functions
oo
f(D=z+ }:;Zanz"
n=
analytic in the unit disk U. Andlet K, and K __ denote the classes of functions
f(2)EA satisfying the following conditions

DMHERD Y L jhw
[pf gy B SR

and
{ DI ()
Re

F o PR 163)

z

] > 425 Gew

for 0< e <1, respectively.
Hence, we have Theorem 3 and Theorem 4 from Theorem 1 and Theorem 2,
respectively.

THEOREM 3. The necessary and sufficient condition for a funciion f(2)EA fo
be in the class K, 0<a<1, is

Re | 2 16))
D2

THEOREM 4. The necessary and sufficient condition for a function f(2)EA lo
be in the class K, 0<a<l, is

b> 5 cem.

[D“’ f@

€ —a

D " f(z)
THEOREM 5. Let the function f(z) belong to the family A and satisfy the

condition

b > 5 e

£ n(n+Dla, | <1.
Then, for 0<la<, the function f(2) is in the class K .
PROOF. The hypothesis of the theorem

I nn+Dla, | <1

implies the inequality
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® I'(n+2)
—!E_; 2("_1)1 ]ﬂ”! 1
oo > T .
I(n-1
= (,(zn 1))r la,| :
Accordingly,
[ ® I'(nta+l) n—1
[D‘“f(z)} o | T DT @D %7
Df() | .. & Tt =
[ 2 G DI FatD %%

= r(fz-}-a;l)
=N IRACES)) la,|
I(nta)
b o (n—1! I'la+1) la,|

=2

I\%

o Mnt+2
= Vel
L2 I'(as+1)

This proves that the function f(2) is in the class K, by means of Theorem 3.

The next result is given in much the same way as Theorem 5.

THEOREM 6. Let the function f(z) belong to the family A and satisfy the

condition
Z‘ (2n+1)|a,| <1

Then, for 0<a<1, the funciion f(z) is in the class K _ o
4. The Ruscheweyh’s problems for the classes K and K,

St. Ruscheweyh gave the following problems in [2].

PROBLEM 1. What can be said about the classes K, if we replace the natural
number # in (4) by an arbitrary real number a=1. Is it perhaps that K'aCK'ﬁ
for a>f87

PROBLEM 2. Is K, closed under the Hadamard product?

The truth of Problem 2 is trivial for «=—1 and was proved by St. Rusche-
weyh and T. Sheil-Small in [3] for a=0, 1.
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Now, we give some results for Problem 1 in a sense.

THEOREM 7. Let the function f(z) belong to the class K, ; and satisfy the
condition
2 @Cp+37-+-4) Mn+d+1)
=S I ¢ ) a,| <1

for 0<a<1 and 0<a+0d<1. Then the funciion F(2)is in the class K o

PROOF. The hypothesis of the theorem

® (Cn+30+-4) Mant+g+1) |
) =D I'(0+3) la,|<1

n=2

implies the inequality

o I'in+g+2)

o 352 (2—1)!1 T 0—-3) le,! "
=, Ia+d+1) > 5
1+,5 =0 I'@0+2) )laﬂl
Accordingly,
. i Inta=1) o
Re {D1+ﬂ‘f( ) } J 1475) (IEHIJI[(Q_L_Z) a z \
D*f(z) lﬁ‘\% — =
g=2 (n—-1)! IMla+1) az J
©  I(atat+l)
- l“"gz: n—1)! I'(er+2) | la|
= = fuz_f_q) :
1+15 (- IMee+1) 1(1”,
- IF(ntat+d+1)
> 1_"}::'-’_”——1” Tla—o+2) 1%l
§ o e LB RFE) )
Y& D reriTD
- I'(nt+dé+2)
> 1—5 (n—1)! IF'(0+3) le,|
;e o Dlebd 1)
1—.5 (-t I'(6+2) la,|
3 <2

This proves that the function f(2) is in the class K, with the aid of Theorem 3.

COROLLARY 1. There exisls the function f(z) of the class K, _; such that is
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in the class K, where 0-{a<{1 and 0a+d <L

COROLLARY 2. For the family of functions
oo
f)=z2+ Py arnz"
n==2
satisfyving the following condition

®  (2u+30—38+4) I'pta—7F+1)
= =D I'a—B135) |2, <1,

if 0<BA<ae<1 and 02— F<1, then KU:CKP@.

THEOREM 8. Le! the function f(z) belong to the class K _ o and satisfy the
condition
° (Bu+30+1) I'ln+a)
N CES I ¢ RS

#=2

Jor 0la<1 and 0<ax—6<1. Then the function f(2) is in the class K_ .

CORCLLARY 8. There exists the function f(2) of the class £ _, i such that is

in the class K where 0<a <1 and 0<a+d <.

_a’
COROLLARY 4. For the family of functions
oh
flz)=z+ Z:anz”
==

satisfving the following condition

< (p+3a—35+1) I'nta—Ff5)
g (n—1)1 [a—5+2) lczﬂj

if 0<Ba—58<1, then Kﬂ,{CKuﬁ.

<1,

The proofs of Theorem 8, Corollary 3, and Corollary 4 are given in much the
same way as Theorem 7, Corollary 1, and Corollary 2, respectively.

Finally, we have the following results for Problem 2 in a sense.

THEOREM 9. Let the Function F(z) belong to the family A and satisfy the
condition

= wn+2)la, | <1

Then, for 0<a<1, the Hadamard product f*f(z) is in the class K .

PROOF. The hypothesis of the theorem
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X;; nn+2)e,| <1

n=21

Jeads the inequalities Iaﬂl <1 and

- ;’i IMn+2) ]
w=2 La—1)! e 1
o : > T
{fntl)

S D gyl LA

n==2

On the other hand, since the Hadamard product of f(z) and f(2) is given bw

oo
fFrle)=atdl a2,
n=72

we have
& IMin+a+l) 2 a—1
[M@L} gl am DT (et "*
D f*f(2)) o I{n-ta) 2 -1
W G DI TatD) %~
o0 Tn—a+1) g
- 1_5 m—1)! I'{x+2) e, |
B o2 Iinta) 2
1+,£ n—1)! IMe+1) la,l
= n+ta+1)
S 1—5 (n—1! IMx+2) la,|
) = In+a)
1+ 2 G oD et %]
o {nt2)
o 1-X Sr—D)1 18]
LB Pt
1 ',‘{5 WW,J
B

Therefore, the Hadamard product f*f(z) is in the class K, with the aid of

Theorem 3.

COROLLARY 5. There exists the funciion f(z) of the class K « Such that the
Hadamard product f*f(z) is in the class K o Where 0<a<1.

COROLLARY 6. If the function f(z) belongs to the class K, and satisfies the
condition
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(4]
= nin+2)]e,| <1,
n=
then the Hadamard product f*f(z) is in the class K, where 0Za<l.

THEOREM 10. Let the function f(2) belong to the family A and satisfy the
condilion
Z; @Cr+1Dla,] <1
n=2zZ

Then, for 0<a<1, the Hadamard product [*f(2) is in the class K __.

X

COROLLARY 7. There exisis the function f(z) of the class K % such that the
Hadamard product (*f(z) is in the class K __, where 0la<1.

CCROLLARY & If the function f(z) Lelongs to the class K _, and satisfies the
condition

[ o]
X @n+1la,| <1,
n=z

then the Hadamard product f*f(2) is in the class K __, where 0<a <l.

o’

The proofs of Theorem 10, Corollary 7, and Corollary 8 are given in much
the same way as Theorem 9, Corollary 5, and Corollary 6, respectively.
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