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PRINCIPAL SCLUTIONS OF 2N-ORDER REAL SELF-ADJOINT
DIFFERENTIAL SYSTEMS

Bv Sung J. Lee

Hartman [3], [4] gave explicit formulas for principal solutions for a second
«order system of differential eguations which is equivalent to a case of identically
rnormal Hamiltonian system. In this note we show thal his construction can be

~carried over to an even order real self-adjoint system of differential equations.

1. Let A, B, C be n#x#n continuous matrix-valued function of # on an interval
"{a, ) (|a| <oo, may be oo} such that A*(@)=A@), CE=C*(@) for iE]a, b).
‘Consider a Hamiltonian system

¥ =B(t)y+C(t)z,

{z’ =— Ay -B*(Dz .1
:and a matrix equation

[Y’ =B(OY+CW)Z,

Z'=—-AQY -B*D)Z (1.2)
“where ¥, z are nx1 vectors, and Y, Z are n><n matrices defined on [a, 8). An
inXn matrix solution (¥, Z) of (1.2) is called an anti-principal (non-principal in

[3]) if it is conjoined (self-conjugate in [4], isotropic in [2]), det ¥ (#)=£0 for

-all i€ [e,8) for some e<c¢<k, and

im [ ¥ 0@re i ds
t—bv ¢

cconverges entry-wise to a finite limit. A solution (¥, Z2) of (1. 2) is called a
-principal solution if it is conjoined, det ¥ (#)#0 for all t€[c, b) for some a<<c<d,
-and

‘ ~1
; -1, TR -
%33 [ fr Y (8CEY (s)ds:’ 0.

We assume here that (H1) C(?) is non-negative definite on [a, &), (112) Nor-
'mality conditien, that is, if (¥,z) is a solution of (1. 1) such that 3(£)=0 on scme
-subinterval J of [a, &), then 2(£)=0 on J, (H3) there exists a conjoined solution
(¥,Z) of (1.2) such that ¥(#) is invertible for all ¢ in a neighborhood of &,
tthat is, det Y ()20 for all {E]c, b) for some e<c<b. When (H1)—(1I3) are
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satisfied, it is known (Theorem 3, Ch. 2, [2]) that principal solutions of (1, 2)
exist. But the construction in [2] involves a limiting process. The aim of thiss
note is to give a simple explicit construction ef principal solutions of (1.2)
without a limiting process, and apply the result to even order self-adjoint differen-
tial systems. Such a construction was given in [4] (See the proof of Theorems
10.5 and §11) in the special case when

B=—-ER-F*N, C=FE and A=Q+R*ER+R*F*N+N*FR-+-N*GN
where E, F, &, N, R, Q ar¢ continuous matrix-valued functions such that:
E=FE*% G=G¥* Q=Q% FE is non-negative definite and (E F*\ is non-singular.

FG/

The normality condition for the corresponding equation (1.1) was assumed.

THECREM 1. Suppose that (¥, Z) is a conjoired solution of (1.2) such that
detY ()220 for all tE[c, b) for some a<c<b.
() Define (¥, Z)) on [e,b) by

TO=Y®1,+[ v @cE@ v+l as],
4

z,0=zw[1,+[ ¥ ©CEr s as|+ ¥L(o.
Then (¥, £,) is an anii-frincipal solution of (1.2).
(ii) Define (¥, Z,) on [e, b) by
==t e
{Yz(z) =¥,® [[¥] (0T () ds,

Z,0=2, [ ¥ QCOY¥ () ds—¥* @
Then (Y., Z,) is a principal solution of (1. 2).

PROOF. (i) It is clear that det¥ ()70, ¢=i<¥, and (¥, Z,) is a conjoined’

solution of (1.2) (proposition 1, p.35, [2]). By (Proposition 3 p.39, [2]) that
Y=Y, —8,#), (e<t<b),
where
5, 0=[17 e Y ds.

Let r(#)=max{|2] : 4 is an eigenvalue of §,(£)}. Then since §;() is self-
adjoint, it follows from a well-known theorem on spectral radius that

(1.3) r(H=max %S, : =11 =8,

Wherc!ESl(I] [denotes the norm of Sl(t) when it is considered as an operator fromu
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C" into C". Then by (1.3)
r)=<r(ty, (¢t <t,<b),
and so ]i!El’; r(t)<co if, and only if the entries of S,(#) converges as f—b. To
complete the proof, it is sufficient to show that il_rg r(f)<co. Now it follows
from (line 11, p.40, [2]) that
L= +So(OXI,~S,(1), (e<t<b), (1.4)
where
Sot)= [ Y UHC@ ¥+ X(s) ds.
Since 1 n—Sl(t) is positive definite by (1.4), any eigenvalue of J, —S,(£) is less
than 1. Hence
fp <
(i) By (1), Zt[f; S;(#) exists. Let us denote this limit by D. Since det ¥,(#)#0
for all ¢==¢{<d and (H2) holds, it follows from (Proposition 2, p.38, [2]) that
5,(#) is an increasing function of t&E[e,b). In particular, det D320, det Y ,(£)5£0
for ¢<i<(d. Let us write
{Yz(f)=yl(f) (D=5, 1
Z,(D=Z,(DHD-5,@))-Y* &
for e<<t<b. Clearly (¥, Z,) is a conjoined solution of (1.2). By (Proposition 3,
p-39, [2]),

(1.5)

Y, (D=Y, (D +8,(), (c<t<p) (1.6)
where
Sy = [17; {ICOT*, () ds, e<t<b).
Thus from (1.5), (1.6) together with (line 11, p.40, [2]),

= FTHOCET* ) d)D T 8,00), (e<t<b). a.m
This implies that
lim S:l(t):().
t—b 2
This completes the proof.

We will say that (1.1) is disconjugate near & if there exists ¢E(g, §) such
that (1.1) is disconjugate on [e¢, &). We note that if (H1) and (H2) are satisfied,
then (1.1) is disconjugate near # if, and only if (H3) holds. For the “if” part,
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see (Theorem 2, p.39, [2]). The “only if” part was proved in [4] in a special
case when C is invertible. For completeness, we will prove “only if” part. (See
also the proof of Theorem 10. 2, [4] where B-corresponds to C).

Y () Yy
(Z(!) zo<f>)

be the 2#X2n fundamental matrix solutioh of (1.2) such that ¥Y(c)=I, =2Z.(1),
Z(c)=Y(¢)=0 where (1.1) is assumed disconjugate on [¢,#). Then clearly (¥,
Z) is conjoined. We claim that det Y ((£)5#0 for all 1€(c, 8). If det ¥ (#)=0
for some ¢<#;<b, then YGO)?}:O for some non-zero constant vector 7. Define
x(t):Y(;(f)n'. 'Z(t):ZO(t)rz. Then (x,y) is a solution of (1.1) such that x(e)=0
=x(¢;). Thus z=0. By (H,), 2(#)=0. This means that z(¢)=Zy(c)z=71=0C. This
is a contradiction.

Let

REMARK 1.1. By (HL), (H2) and (H3), Z, and Z, in Theorem 1 are deter-
mined by ¥, and ¥, respectively (see p. 386, [4] 2

2. Consider an 2# order real self-adjoint system
=2 @Oy P=0,,, @0
and a mxmn equation
ry=éﬂ(P g (2.2)

Where ¥ and ¥ are m<1 and m < mn matrices. Here P L (0<A< n) arc m > n real
hermitian k-times continuously differentiable matrix-valued functions on [a,8)
(la| < oo, b may be infinite) such that (—i)"’Ps(t) is positive definite for all
=la,b).

If U is a mXr matrix, then define mn<X7 matrices #(U) and {(U) by

/ g \ / L@
uU)=| . L= -
\ =/ L)

“where Cj(U) (1=<j<n) is the m < matrix defined by
LW)=( —1)]’%}, 9 K

“We can check that if ¥, Z are sufficiently differentiable m<mn matrices, then
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:’ (Z*zY — (zZ2)*Y)dt= (I*(Z)t?(Y)— w*(Z)LXE,) — (DU —w*(ZLT)) (L)
for all a<t, <#,<®.

We say that a m>mn matrix ¥ of (2.2) is enti-principal if (i) it is conjoined,
that is, {F(Y)u(Y) is hermitian, (i) det#(Y (£))=20 for all {&[e,b) for some
a<c<b,

(iii) limf_"(zt(}’(s)))_lC(!)(u*(Y(s)))ﬁl ds exists entry-wise.
t—bJe

The ¥ is called principal if (i) is conjoined, det w(¥{#))70 for all {E€][c, &)
for some a<<¢<d, and

lim [ f"(u(}’(s)))_IC(s)(u(Y(s)))*_1 ds]“l =0
b ¢

T Yntn X mn
where C(#) (a<c<b) is the mn>mn matrix defined by

CH=diag(0,,,, 0 sy (—1)"P, 7).

THEOREM 2.  Assume that X is a mx<mn conjoined solution of (2.2) such that
det u(X(D))=0 for all t€e, D) for some a<c<b.
(i) Define a m>mn matriz X, on [c, b) by

u (X, ) =wX DL, +[ @X N7 WX ) ds ).

Then X is an anti-principal solution of (2.2).
(ii) Let X, be as the above. Define a m~xmn mairix X, on [c, b) by

w(XY=1(X() [[@X (N T OO WX (D)* .

Then X, is a principal solution of (2.2).

PROQF. Define mn>mn matrices 4, B on [a, &) by
A=—diag(P,, -, (—l)kPk."'. (—l)n—lP,,_l):
(8] I

forXm
B:l i
O O

m¥m mr s
where r=(n—1)m. Then A=A4¥*
We can checzk easily (cf. p.76, [2]) that (2. 1) is equivalent to
' (=B u(»+C® L),
L) =—-A® u(y)-B*®OL),
where C(f) is defined earlier, which is non-negative definite. This is identically
normal. Thus the result follows from Theorem 1 and Remark I.1.

23
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COROLLARY 3. Assume n=1. Suppose that X is a m><m matrix soluiion of
{2.2) such that detX ()20 for all t€[c, b) for some a=c<b. Then we have the
JSollowing:

(i) Define @ mxm matrix X, on [e, b) by

X,O=X®0[1,~ [ X~ PLUHX* ) ds).

Then X | is an anti-principal solution of (2.2).
(i) Le! X, be as the above. Define a mxm mairix X, on [c, b) by

i Bk v ) =1,
X, O=-2,0f, %7 P X 9 ds.
Then X, is a principal solution of (2.2).

REMARK. The above Corollary was obtained in [3], and later in [4] in a
more general second order system.
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