PRINCIPAL SOLUTIONS OF $2 N-O R D E R$ REAL SELF-ADJOINT DIFFERENTIAL SYSTEMS

By Sung J. Lee

Hartman [3], [4] gave explicit formulas for principal solutions for a second order system of differential equations which is equivalent to a case of identically normal Hamiltonian system. In this note we show that his construction can be carried over to an even order real self-adjoint system of differential equations.

1. Let A, B, C be $n \times n$ continuous matrix-valued function of t on an interval ${ }^{\prime}[a, b)(|a|<\infty$, may be $\infty)$ such that $A^{*}(t)=A(t), \quad C(t)=C^{*}(t)$ for $t \in[a, b)$. , Consider a Hamiltonian system

$$
\left\{\begin{array}{l}
y^{\prime}=B(t) y+C(t) z, \tag{1.1}\\
z^{\prime}=-A(t) y-B^{*}(t) z
\end{array}\right.
$$

: and a matrix equation

$$
\left\{\begin{array}{l}
Y^{\prime}=B(t) Y+C(t) Z, \\
Z^{\prime}=-A(t) Y-B^{*}(t) Z \tag{1.2}
\end{array}\right.
$$

where y, z are $n \times 1$ vectors, and Y, Z are $n \times n$ matrices defined on $[a, b)$. An $i \times n$ matrix solution (Y, Z) of (1.2) is called an anti-principal (non-principal in [3]) if it is conjoined (self-conjugate in [4], isotropic in [2]), $\operatorname{det} Y(t) \neq 0$ for all $t \in[c, b)$ for some $a \leq c<b$, and

$$
\lim _{t \rightarrow b} \int_{c}^{t} Y^{-1}(s) C(s) Y^{*-1}(s) d s
$$

converges entry-wise to a finite limit. A solution (Y, Z) of (1.2) is called a principal solution if it is conjoined, $\operatorname{det} Y(t) \neq 0$ for all $t \in[c, b)$ for some $a \leq c<b$, :and

$$
\lim _{t \rightarrow b}\left[\int_{c}^{t} Y^{-1}(s) C(s) Y^{*-1}(s) d s\right]^{-1}=0
$$

We assume here that (H1) $C(t)$ is non-negative definite on $[a, b$), (H2) Normality condition, that is, if (y, z) is a solution of (1.1) such that $y(t) \equiv 0$ on some 'subinterval J of $[a, b)$, then $z(t) \equiv 0$ on J, (H3) there exists a conjoined solution ' (Y, Z) of (1.2) such that $Y(t)$ is invertible for all t in a neighborhood of b, that is, det $Y(t) \neq 0$ for all $t \in[c, b)$ for some $a \leq c<b$. When (H1)-(H3) are
satisfied, it is known (Theorem 3, Ch. 2, [2]) that principal solutions of (1.2), exist. But the construction in [2] involves a limiting process. The aim of this; note is to give a simple explicit construction of principal solutions of (1.2) without a limiting process, and apply the result to even order self-adjoint differential systems. Such a construction was given in [4] (See the proof of Theorem 10.5 and $\S 11$) in the special case when

$$
B=-E R-F^{*} N, \quad C=E \text { and } A=Q+R^{*} E R+R^{*} F^{*} N+N^{*} F R+N^{*} G N
$$

where E, F, G, N, R, Q are continuous matrix-valued functions such that $E=E^{*}, G=G^{*}, Q=Q^{*}, E$ is non-negative definite and $\left(\begin{array}{ll}E & F^{*} \\ F & G\end{array}\right)$ is non-singular.
The normality condition for the corresponding equation (1.1) was assumed.
THEOREM 1. Suppose that (Y, Z) is a conjoined solution of (1.2) such that: $\operatorname{det} Y(t) \neq 0$ for all $t \in[c, b)$ for some $a \leq c<b$.
(i) Define $\left(Y_{1}, Z_{1}\right)$ on $[c, b) b y$

$$
\left\{\begin{array}{l}
Y_{1}(t)=Y(t)\left[I_{n}+\int_{c}^{t} Y^{-1}(s) C(s) Y^{*-1}(s) d s\right] \\
Z_{1}(t)=Z(t)\left[I_{n}+\int_{c}^{t} Y^{-1}(s) C(s) Y^{*-1}(s) d s\right]+Y^{*-1}(t)
\end{array}\right.
$$

Then $\left(Y_{1}, Z_{1}\right)$ is an anti-principal solution of (1.2).
(ii) Define $\left(Y_{2}, Z_{2}\right)$ on $[c, b)$ by

$$
\left\{\begin{array}{l}
Y_{2}(t)=Y_{1}(t) \int_{c}^{t} Y_{1}^{-1}(s) C(s) Y_{1}^{*-1}(s) d s \\
Z_{2}(t)=Z_{1}(t) \int_{c}^{t} Y_{1}^{-1}(s) C(s) Y_{1}^{*-1}(s) d s-Y_{1}^{*-1}(t)
\end{array}\right.
$$

Then $\left(Y_{2}, Z_{2}\right)$ is a principal solution of (1.2).
PROOF. (i) It is clear that $\operatorname{det} Y_{1}(t) \neq 0, c \leq t<b$, and $\left(Y_{1}, Z_{1}\right)$ is a conjoined solution of (1.2) (proposition 1, p. 35, [2]). By (Proposition 3 p. 39, [2]) that

$$
Y(t)=Y_{1}\left(I_{n}-S_{1}(t)\right), \quad(c \leq t<b),
$$

where

$$
S_{1}(t)=\int_{c}^{t} Y_{1}^{-1}(s) C(s) Y_{1}^{*-1}(s) d s
$$

Let $r(t)=\max \left\{|\lambda|: \lambda\right.$ is an eigenvalue of $\left.S_{1}(t)\right\}$. Then since $S_{1}(t)$ is selfadjoint, it follows from a well-known theorem on spectral radius that

$$
\begin{equation*}
r(t)=\max \left\{\eta^{*} S_{1}(t) \eta: \eta^{*} \eta=1\right\}=\left\|S_{1}(t)\right\|, \tag{1.3}
\end{equation*}
$$

where $\left\|S_{1}(t)\right\|$ denotes the norm of $\mathrm{S}_{1}(t)$ when it is considered as an operator from
C^{n} into C^{n}. Then by (1.3)

$$
r(t) \leq r\left(t_{2}\right), \quad\left(c \leq t_{1}<t_{2}<b\right),
$$

and so $\lim _{t \rightarrow b} r(t)<\infty$ if, and only if the entries of $S_{1}(t)$ converges as $t \rightarrow b$. To complete the proof, it is sufficient to show that $\lim _{t \rightarrow b} r(t)<\infty$. Now it follows from (line 11, p. 40, [2]) that

$$
\begin{equation*}
I_{n}=\left(I_{n}+S_{0}(t)\right)\left(I_{n}-S_{1}(t)\right), \quad(c \leq t<b), \tag{1.4}
\end{equation*}
$$

where

$$
S_{0}(t)=\int_{c}^{t} Y^{-1}(s) C(s) Y^{*-1}(s) d s
$$

Since $I_{n}-S_{1}(t)$ is positive definite by (1.4), any eigenvalue of $I_{n}-S_{1}(t)$ is less than 1. Hence

$$
\lim _{t \rightarrow b} r(t)<\infty
$$

(ii) By (i), $\lim _{t \rightarrow b} S_{1}(t)$ exists. Let us denote this limit by D. Since $\operatorname{det} Y_{1}(t) \neq 0$ for all $c \leq t<b$ and (H2) holds, it follows from (Proposition 2, p. 38, [2]) that $S_{1}(t)$ is an increasing function of $t \in[c, b)$. In particular, $\operatorname{det} D_{\neq 0}, \operatorname{det} Y_{2}(t) \neq 0$ for $c \leq t<b$. Let us write

$$
\left\{\begin{array}{l}
Y_{2}(t)=Y_{1}(t)\left(D-S_{1}(t)\right) \tag{1.5}\\
Z_{2}(t)=Z_{1}(t)\left(D-S_{1}(t)\right)-Y_{1}^{*-1}(t)
\end{array}\right.
$$

for $c \leq t<b$. Clearly $\left(Y_{2}, Z_{2}\right)$ is a conjoined solution of (1.2). By (Proposition 3, p. 39, [2]),

$$
\begin{equation*}
Y_{1}(t)=Y_{2}(t)\left(D^{-1}+S_{2}(t)\right), \quad(c \leq t<b) \tag{1.6}
\end{equation*}
$$

where

$$
S_{2}(t)=\int_{c}^{t} Y_{2}^{-1}(s) C(s) Y_{2}^{*-1}(s) d s, \quad(c \leq t<b)
$$

Thus from (1.5), (1.6) together with (line 11, p. 40, [2]),

$$
\begin{equation*}
I_{n}=\left(\int_{c}^{t} Y_{1}^{-1}(s) C(s) Y_{1}^{*-1}(s) d s\right)\left(D^{-1}+S_{2}(t)\right), \quad(c \leq t \leq b) \tag{1.7}
\end{equation*}
$$

This implies that

$$
\lim _{t \rightarrow b} S_{2}^{-1}(t)=0
$$

This completes the proof.
We will say that (1.1) is disconjugate near b if there exists $c \in(a, b)$ such: that (1.1) is disconjugate on $[c, b)$. We note that if (H1) and (H2) are satisfied, then (1.1) is disconjugate near b if, and only if (H3) holds. For the "if" part,
see (Theorem 2, p.39, [2]). The "only if" part was proved in [4] in a special case when C is invertible. For completeness, we will prove "only if" part. (See also the proof of Theorem 10.2, [4] where B corresponds to C).

Let

$$
\left(\begin{array}{ll}
Y(t) & Y_{0}(t) \\
Z(t) & Z_{0}(t)
\end{array}\right)
$$

be the $2 n \times 2 n$ fundamental matrix solution of (1.2) such that $Y(c)=I_{n}=Z_{0}(t)$, $Z(c)=Y_{0}(c)=0$ where (1.1) is assumed disconjugate on $[c, b)$. Then clearly $\left(Y_{0}\right.$, $\left.Z_{0}\right)$ is conjoined. We claim that det $Y_{0}(t) \neq 0$ for all $t \in(c, b)$. If $\operatorname{det} Y_{0}\left(t_{1}\right)=0$ for some $c<t_{1}<b$, then $\dot{Y}_{0}(t) \eta_{1}=0$ for some non-zero constant vector η_{0}. Define $x(t)=Y_{0}(t) \eta, Z(t)=Z_{0}(t) r_{i}$. Then (x, y) is a solution of (1.1) such that $x(c)=0$ $=x\left(t_{1}\right)$. Thus $x \equiv 0$. By $\left(\mathrm{H}_{2}\right), z(t) \equiv 0$. This means that $z(c)=Z_{0}(c) r_{i}=\eta_{i}=0$. This is a contradiction.

REMARK 1.1. By (H1), (H2) and (H3), Z_{1} and Z_{2} in Theorem 1 are determined by Y_{1} and Y_{2} respectively (see p. 386, [4]).
2. Consider an $2 n$ order real self-adjoint system

$$
\begin{equation*}
\tau y=\sum_{k=0}^{n}\left(P_{k}(t) y^{(k)}\right)^{(k)}=0_{m \times 1}, \tag{2.1}
\end{equation*}
$$

and a $m \times m n$ equation

$$
\begin{equation*}
\tau y=\sum_{k=0}^{n}\left(P_{k}(t) Y^{(k)}\right)^{(k)}=0_{m \times m n} \tag{2.2}
\end{equation*}
$$

Where y and Y are $m \times 1$ and $m \times m n$ matrices. Here $P_{k}(0 \leq k \leq n)$ are $m \times n$ real hermitian k-times continuously differentiable matrix-valued functions on [a,b) $\left(|a|<\infty, b\right.$ may be infinite) such that $(-1)^{n} P_{n}(t)$ is positive definite for all $t \in[a, b)$.

If U is a $m \times r$ matrix, then define $m n \times r$ matrices $u(U)$ and $\zeta(U)$ by

$$
u(U)=\left(\begin{array}{l}
U \\
U^{\prime} \\
\vdots \\
U^{(n-1)}
\end{array}\right)
$$

$$
\zeta\left(U \Omega=\left(\begin{array}{c}
\zeta_{1}(U) \\
\vdots \\
\vdots \\
\zeta_{n}(U)
\end{array}\right)\right.
$$

where $\zeta_{j}(U)(1 \leq j \leq n)$ is the $m \times r$ matrix defined by

$$
\zeta_{j}(U)=(-1)^{j} \sum_{k=j}^{n}\left(P_{k}(t) U^{(k)}\right)^{(k-j)}
$$

We can check that if Y, Z are sufficiently differentiable $m \times m n$ matrices, then
$\left.\int_{t_{1}}^{t_{2}}\left(Z^{*} \tau Y-(\tau Z) * Y\right) d t=\left(\zeta^{*}(Z) u(Y)-u^{*}(Z) \zeta(Y)\right)\left(t_{1}\right)-\left(\zeta^{*}(Z) u(Y)-u^{*}(Z)\right)^{\xi}(Y)\right)\left(t_{2}\right)$ for all $a \leq t_{1}<t_{2}<b$.

We say that a $m \times m n$ matrix Y of (2.2) is anti-principal if (i) it is conjoined, that is, $\zeta^{*}(Y) u(Y)$ is hermitian, (ii) $\operatorname{det} u(Y(t)) \neq 0$ for all $t \in[c, b)$ for some $a \leq c<b$,
(iii) $\lim _{t \rightarrow \dot{b}} \int_{c}^{t}(u(Y(s)))^{-1} C(t)\left(u^{*}(Y(s))\right)^{-1} d s$ exists entry-wise.

The Y is called principal if (i) is conjoined, $\operatorname{det} u(Y(t)) \neq 0$ for all $t \in[c, b)$ for some $a \leq c<b$, and

$$
\lim _{t \rightarrow b}\left[\int_{c}^{\prime}(u(Y(s)))^{-1} C(s)(u(Y(s)))^{*-1} d s\right]^{-1}=0_{m n \times m n}
$$

where $C(t)(a \leq c<b)$ is the $m n \times m n$ matrix defined by

$$
C(t)=\operatorname{diag}\left(0_{m \times m}, \cdots, 0_{m \times m},(-1)^{n} P_{n}^{-1}(t)\right) .
$$

THEOREM 2. Assume that X is a $m \times m n$ conjoined solution of (2.2) such that det $u(X(t)) \neq 0$ for all $t \in[c, \dot{b})$ for some $a \leq c<b$.
(i) Define a $m \times m n$ matrix X_{1} on $[c, b)$ by

$$
u\left(X_{1}(t)\right)=u\left(X(t)\left[I_{n m}+\int_{c}^{t}(u(X(s)))^{-1} C(s)(u(X(s)))^{*^{-1}} d s\right]\right) .
$$

Then X_{1} is an anti-principal solution of (2.2).
(ii) Let X_{1} be as the above. Define a $m \times m n$ matrix X_{2} on $[c, b)$ by

$$
u\left(X_{2}(t)\right)=u\left(X_{1}(t)\right) \int_{c}^{t}\left(u\left(X_{1}(s)\right)\right)^{-1} C(s)\left(u\left(X_{1}(s)\right)\right)^{*-1} d s
$$

Then X_{2} is a principal solution of (2.2).
PROOF. Define $m n \times m n$ matrices A, B on $[a, b)$ by

$$
\begin{aligned}
& A=-\operatorname{diag}\left(P_{0}, \cdots,(-1)^{k} P_{k}, \cdots,(-1)^{n-1} P_{n-1}\right), \\
& B=\binom{0_{r \times m} I_{r}}{0_{m \times m} 0_{m \times r}},
\end{aligned}
$$

where $r=(n-1) m$. Then $A=A^{*}$.
We can check easily (cf. p. 76, [2]) that (2.1) is equivalent to

$$
\left\{\begin{array}{l}
u^{\prime}(y)=B(t) u(y)+C(t) \zeta(y) \tag{2.3}\\
\zeta(y)=-A(t) u(y)-B^{*}(t) \zeta(y),
\end{array}\right.
$$

where $C(t)$ is defined earlier, which is non-negative definite. This is identically normal. Thus the result follows from Theorem 1 and Remark 1.1.

COROLLARY 3. Assume $n=1$. Suppose that X is a $m \times m$ matrix solution of (2.2) such that $\operatorname{det} X(t) \neq 0$ for all $t \in[c, b)$ for some $a \leq c<b$. Then we have the following:
(i) Define a $m \times m$ matrix X_{1} on $[c, b)$ by

$$
X_{1}(t)=X(t)\left[I_{m}-\int_{c}^{t} X^{-1}(s) P_{1}^{-1}(s) X^{*-1}(s) d s\right]
$$

Then X_{1} is an anti-principal solution of (2.2).
(ii) Let X_{1} be as the above. Define a $m \times m$ matrix X_{2} on $[c, b)$ by

$$
X_{2}(t)=-X_{1}(t) \int_{t}^{j} X_{1}^{-1}(s) P_{1}^{-1}(s) X_{1}^{*-1}(s) d s
$$

Then X_{2} is a principal solution of (2.2).
REMARK. The above Corollary was obtained in [3], and later in [4] in a more general second order system.

Department of Mathematics
Pan American University Edinburg, TX 78539

REFERENCES

[1] Ahlbrandt, C.D., Principal solutions of self-adjoint differential systems and their reciprocals, Rocky Mountain J. Math., Vol. 2, No. 2(1972), 169-182.
[2] Coppel, W.A., Disconjugacy, Lecture notes in Mathematics, Vol. 220, SpringerVerlag (1971), Berlin, Heidelberg, New York.
[3] Hartman, P., Self-adjoint, non-oscillatory systems of ordinary second order, linear differential equations, Duke Math. J. (24) (1957), 25-35.
[4] Hartman, P., Ordinary differntial equations, John Wiley (1964), New York.
[5] Naimark, M. A., Linear differential operators, Part I, Frederick Ungar (1967), New York.
[6] Reid, W.T., Principal solution of non-oscillatory self-adjoint linear diffcrential systems, Pacific J. Math., (80) (1958), 147-169.
[7] Reid, W.T., Riccati matrix differential equations and non-oscillatory criteria for associated linear differential systems, Pacific J. Math., (13) (1963), 665-685.
[8] Reid, W.T., Ordinary differential equations, Wiley-Interscience (1971) New York.

