## PRINCIPAL SOLUTIONS OF 2N-ORDER REAL SELF-ADJOINT DIFFERENTIAL SYSTEMS

## By Sung J. Lee

Hartman [3], [4] gave explicit formulas for principal solutions for a second order system of differential equations which is equivalent to a case of identically normal Hamiltonian system. In this note we show that his construction can be exarried over to an even order real self-adjoint system of differential equations.

1. Let A, B, C be  $n \times n$  continuous matrix-valued function of t on an interval [a, b) ( $|a| < \infty$ , may be  $\infty$ ) such that  $A^*(t) = A(t)$ ,  $C(t) = C^*(t)$  for  $t \in [a, b)$ . Consider a Hamiltonian system

$$\begin{cases} y' = B(t)y + C(t)z, \\ z' = -A(t)y - B^*(t)z \end{cases}$$

$$(1.1)$$

and a matrix equation

$$\begin{cases}
Y' = B(t)Y + C(t)Z, \\
Z' = -A(t)Y - B^*(t)Z
\end{cases}$$
(1.2)

where y, z are  $n \times 1$  vectors, and Y, Z are  $n \times n$  matrices defined on [a, b). An  $n \times n$  matrix solution (Y, Z) of (1.2) is called an anti-principal (non-principal in [3]) if it is conjoined (self-conjugate in [4], isotropic in [2]), det  $Y(t) \neq 0$  for all  $t \in [c, b)$  for some  $a \leq c < b$ , and

$$\lim_{t \to h} \int_{c}^{t} Y^{-1}(s)C(s)Y^{*-1}(s) \ ds$$

converges entry-wise to a finite limit. A solution (Y, Z) of (1.2) is called a principal solution if it is conjoined,  $\det Y(t) \neq 0$  for all  $t \in [c, b)$  for some  $a \leq c < b$ , and

$$\lim_{t\to b} \left[ \int_{c}^{t} Y^{-1}(s)C(s)Y^{*-1}(s)ds \right]^{-1} = 0.$$

We assume here that (H1) C(t) is non-negative definite on [a, b), (H2) Normality condition, that is, if (y, z) is a solution of (1.1) such that  $y(t) \equiv 0$  on some subinterval J of [a, b), then  $z(t) \equiv 0$  on J, (H3) there exists a conjoined solution (Y, Z) of (1.2) such that Y(t) is invertible for all t in a neighborhood of b, that is,  $\det Y(t) \neq 0$  for all  $t \in [c, b)$  for some  $a \leq c < b$ . When (H1)—(H3) are

satisfied, it is known (Theorem 3, Ch. 2, [2]) that principal solutions of (1. 2) exist. But the construction in [2] involves a limiting process. The aim of this note is to give a simple explicit construction of principal solutions of (1.2) without a limiting process, and apply the result to even order self-adjoint differential systems. Such a construction was given in [4] (See the proof of Theorems 10.5 and §11) in the special case when

 $B=-ER-F^*N$ , C=E and  $A=Q+R^*ER+R^*F^*N+N^*FR+N^*GN$  where E, F, G, N, R, Q are continuous matrix-valued functions such that  $E=E^*$ ,  $G=G^*$ ,  $Q=Q^*$ , E is non-negative definite and  $\begin{pmatrix} E & F^* \\ F & G \end{pmatrix}$  is non-singular.

The normality condition for the corresponding equation (1.1) was assumed.

THEOREM 1. Suppose that (Y, Z) is a conjoined solution of (1.2) such that  $detY(t)\neq 0$  for all  $t\in [c, b)$  for some  $a\leq c < b$ .

(i) Define  $(Y_1, Z_1)$  on [c, b) by

$$\begin{cases} Y_1(t) = Y(t) \Big[ I_n + \int_c^t Y^{-1}(s) C(s) \ Y^{*-1}(s) \ ds \Big], \\ Z_1(t) = Z(t) \Big[ I_n + \int_c^t Y^{-1}(s) C(s) Y^{*-1}(s) \ ds \Big] + Y^{*-1}(t). \end{cases}$$

Then  $(Y_1, Z_1)$  is an anti-principal solution of (1.2).

(ii) Define  $(Y_2, Z_2)$  on [c, b) by

$$\begin{cases} Y_{2}(t) = Y_{1}(t) \int_{c}^{t} Y_{1}^{-1}(s) C(s) Y_{1}^{*-1}(s) \ ds, \\ Z_{2}(t) = Z_{1}(t) \int_{c}^{t} Y_{1}^{-1}(s) C(s) Y_{1}^{*-1}(s) \ ds - Y_{1}^{*-1}(t). \end{cases}$$

Then  $(Y_2, Z_2)$  is a principal solution of (1.2).

PROOF. (i) It is clear that  $\det Y_1(t) \neq 0$ ,  $c \leq t < b$ , and  $(Y_1, Z_1)$  is a conjoined solution of (1.2) (proposition 1, p.35, [2]). By (Proposition 3 p.39, [2]) that  $Y(t) = Y_1(I_n - S_1(t))$ ,  $(c \leq t < b)$ ,

where

$$S_1(t) = \int_c^t Y_1^{-1}(s)C(s)Y_1^{*-1}(s) ds.$$

Let  $r(t)=\max\{|\lambda|: \lambda \text{ is an eigenvalue of } S_1(t)\}$ . Then since  $S_1(t)$  is self-adjoint, it follows from a well-known theorem on spectral radius that

(1.3) 
$$r(t) = \max \{ \eta^* S_1(t) \eta : \eta^* \eta = 1 \} = \|S_1(t)\|,$$

where  $||S_1(t)||$  denotes the norm of  $S_1(t)$  when it is considered as an operator from

 $C^n$  into  $C^n$ . Then by (1.3)

$$r(t) \le r(t_2)$$
,  $(c \le t_1 < t_2 < b)$ ,

and so  $\lim_{t\to b} r(t) < \infty$  if, and only if the entries of  $S_1(t)$  converges as  $t\to b$ . To complete the proof, it is sufficient to show that  $\lim_{t\to b} r(t) < \infty$ . Now it follows from (line 11, p.40, [2]) that

$$I_n = (I_n + S_0(t))(I_n - S_1(t)), (c \le t < b),$$
 (1.4)

where

$$S_0(t) = \int_c^t Y^{-1}(s)C(s) Y^{*-1}(s) ds.$$

Since  $I_n - S_1(t)$  is positive definite by (1.4), any eigenvalue of  $I_n - S_1(t)$  is less than 1. Hence

$$\lim_{t\to b} r(t) < \infty$$

(ii) By (i),  $\lim_{t\to b} S_1(t)$  exists. Let us denote this limit by D. Since  $\det Y_1(t)\neq 0$  for all  $c\leq t < b$  and (H2) holds, it follows from (Proposition 2, p. 38, [2]) that  $S_1(t)$  is an increasing function of  $t\in [c,b)$ . In particular,  $\det D\neq 0$ ,  $\det Y_2(t)\neq 0$  for  $c\leq t < b$ . Let us write

$$\begin{cases} Y_2(t) = Y_1(t) & (D - S_1(t)) \\ Z_2(t) = Z_1(t) (D - S_1(t)) - Y_1^{*-1}(t) \end{cases}$$
 (1.5)

for  $c \le t < b$ . Clearly  $(Y_2, Z_2)$  is a conjoined solution of (1.2). By (Proposition 3, p.39, [2]),

$$Y_1(t) = Y_2(t)(D^{-1} + S_2(t)), (c \le t < b)$$
 (1.6)

where

$$S_2(t) = \int_c^t Y_2^{-1}(s)C(s)Y_2^{*-1}(s) \ ds, \ (c \le t < b).$$

Thus from (1.5), (1.6) together with (line 11, p.40, [2]),

$$I_n = (\int_c^t Y_1^{-1}(s)C(s)Y_1^{*-1}(s) \ ds)(D^{-1} + S_2(t)), \ (c \le t \le b). \tag{1.7}$$

This implies that

$$\lim_{t \to b} S_2^{-1}(t) = 0.$$

This completes the proof.

We will say that (1.1) is disconjugate near b if there exists  $c \in (a, b)$  such that (1.1) is disconjugate on [c, b). We note that if (H1) and (H2) are satisfied, then (1.1) is disconjugate near b if, and only if (H3) holds. For the "if" part,

see (Theorem 2, p.39, [2]). The "only if" part was proved in [4] in a special case when C is invertible. For completeness, we will prove "only if" part. (See also the proof of Theorem 10.2, [4] where B corresponds to C).

Let 
$$\begin{pmatrix} Y(t) & Y_0(t) \\ Z(t) & Z_0(t) \end{pmatrix}$$

be the  $2n\times 2n$  fundamental matrix solution of (1.2) such that  $Y(c)=I_n=Z_0(t)$ ,  $Z(c)=Y_0(c)=0$  where (1.1) is assumed disconjugate on [c,b). Then clearly  $(Y_0,Z_0)$  is conjoined. We claim that  $\det Y_0(t)\neq 0$  for all  $t\in (c,b)$ . If  $\det Y_0(t_1)=0$  for some  $c< t_1< b$ , then  $Y_0(t)\eta=0$  for some non-zero constant vector  $\eta$ . Define  $x(t)=Y_0(t)\eta$ ,  $Z(t)=Z_0(t)\eta$ . Then (x,y) is a solution of (1.1) such that  $x(c)=0=x(t_1)$ . Thus  $x\equiv 0$ . By  $(H_2)$ ,  $z(t)\equiv 0$ . This means that  $z(c)=Z_0(c)\eta=\eta=0$ . This is a contradiction.

REMARK 1.1. By (H1), (H2) and (H3),  $Z_1$  and  $Z_2$  in Theorem 1 are determined by  $Y_1$  and  $Y_2$  respectively (see p. 386, [4]).

2. Consider an 2n order real self-adjoint system

$$\tau y = \sum_{k=0}^{n} (P_k(t)y^{(k)})^{(k)} = 0_{m \times 1}, \tag{2.1}$$

and a  $m \times mn$  equation

$$\tau y = \sum_{k=0}^{n} (P_k(t)Y^{(k)})^{(k)} = 0_{m \times mn}$$
 (2.2)

Where y and Y are  $m \times 1$  and  $m \times mn$  matrices. Here  $P_k(0 \le k \le n)$  are  $m \times m$  real hermitian k-times continuously differentiable matrix-valued functions on [a,b) ( $|a| < \infty$ , b may be infinite) such that  $(-1)^n P_n(t)$  is positive definite for all  $t \in [a,b)$ .

If U is a  $m \times r$  matrix, then define  $mn \times r$  matrices u(U) and  $\zeta(U)$  by

$$u(U) = \begin{pmatrix} U \\ U' \\ \vdots \\ U^{(n-1)} \end{pmatrix}$$
 $\zeta(U) = \begin{pmatrix} \zeta_1(U) \\ \vdots \\ \zeta_n(U) \end{pmatrix}$ 

where  $\zeta_{j}(U)$   $(1 \le j \le n)$  is the  $m \times r$  matrix defined by

$$\zeta_{j}(U) = (-1)^{j} \sum_{k=j}^{n} (P_{k}(t)U^{(k)})^{(k-j)}.$$

We can check that if Y, Z are sufficiently differentiable  $m \times mn$  matrices, then

$$\int_{t_1}^{t_2} (Z * \tau Y - (\tau Z) * Y) dt = (\zeta * (Z) u(Y) - u * (Z) \zeta(Y))(t_1) - (\zeta * (Z) u(Y) - u * (Z) \zeta(Y))(t_2)$$
 for all  $a \le t_1 < t_2 < b$ .

We say that a  $m \times mn$  matrix Y of (2.2) is anti-principal if (i) it is conjoined, that is,  $\zeta^*(Y)u(Y)$  is hermitian, (ii)  $\det u(Y(t))\neq 0$  for all  $t\in [c,b)$  for some  $a\leq c\leq b$ .

(iii) 
$$\lim_{t\to h} \int_{c}^{t} (u(Y(s)))^{-1} C(t)(u^{*}(Y(s)))^{-1} ds$$
 exists entry-wise.

The Y is called *principal* if (i) is conjoined, det  $u(Y(t))\neq 0$  for all  $t\in [c, b)$  for some  $a\leq c < b$ , and

$$\lim_{t\to b} \left[ \int_{c}^{t} (u(Y(s)))^{-1} C(s) (u(Y(s)))^{*-1} ds \right]^{-1} = 0_{mn \times mn},$$

where C(t)  $(a \le c < b)$  is the  $mn \times mn$  matrix defined by

$$C(t) = \text{diag}(0_{m \times m}, \dots, 0_{m \times m}, (-1)^n P_n^{-1}(t)).$$

THEOREM 2. Assume that X is a  $m \times mn$  conjoined solution of (2.2) such that  $\det u(X(t)) \neq 0$  for all  $t \in [c, b)$  for some  $a \leq c < b$ .

(i) Define a m×mn matrix X1 on [c, b) by

$$u(X_1(t)) = u(X(t)) \left[ I_{nm} + \int_{c}^{t} (u(X(s)))^{-1} C(s) (u(X(s)))^{*-1} ds \right]$$

Then  $X_1$  is an anti-principal solution of (2.2).

(ii) Let  $X_1$  be as the above. Define a  $m \times mn$  matrix  $X_2$  on [c, b) by

$$u(X_2(t)) = u(X_1(t)) \int_{c}^{t} (u(X_1(s)))^{-1} C(s)(u(X_1(s)))^{*-1} ds.$$

Then  $X_2$  is a principal solution of (2.2).

PROOF. Define  $mn \times mn$  matrices A, B on [a, b) by

$$A = -\operatorname{diag}(P_0, \dots, (-1)^k P_k, \dots, (-1)^{n-1} P_{n-1}),$$

$$B = \begin{pmatrix} 0_{r \times m} I_r \\ 0 & \dots & 0_{m+1} \end{pmatrix}$$

where r=(n-1)m. Then  $A=A^*$ .

We can check easily (cf. p.76, [2]) that (2.1) is equivalent to

where C(t) is defined earlier, which is non-negative definite. This is identically normal. Thus the result follows from Theorem 1 and Remark 1.1.

COROLLARY 3. Assume n=1. Suppose that X is a  $m \times m$  matrix solution of (2.2) such that  $\det X(t) \neq 0$  for all  $t \in [c, b)$  for some  $a \leq c < b$ . Then we have the following:

(i) Define a  $m \times m$  matrix  $X_1$  on [c, b) by

$$X_1(t)\!=\!X(t)\Big[I_m\!-\!\int_c^t\!X^{-1}(s)\;P_1^{-1}(s)X^{\star-1}(s)\;ds\Big].$$

Then  $X_1$  is an anti-principal solution of (2.2).

(ii) Let  $X_1$  be as the above. Define a  $m \times m$  matrix  $X_2$  on [c, b) by

$$X_2(t) = -X_1(t) \int_t^t X_1^{-1}(s) P_1^{-1}(s) X_1^{*-1}(s) ds.$$

Then  $X_2$  is a principal solution of (2.2).

REMARK. The above Corollary was obtained in [3], and later in [4] in a more general second order system.

Department of Mathematics Pan American University Edinburg, TX 78539

## REFERENCES

- Ahlbrandt, C.D., Principal solutions of self-adjoint differential systems and their reciprocals, Rocky Mountain J. Math., Vol. 2, No. 2(1972), 169-182.
- [2] Coppel, W.A., Disconjugacy, Lecture notes in Mathematics, Vol. 220, Springer-Verlag (1971), Berlin, Heidelberg, New York.
- [3] Hartman, P., Self-adjoint, non-oscillatory systems of ordinary second order, linear differential equations, Duke Math. J. (24) (1957), 25-35.
- [4] Hartman, P., Ordinary differntial equations, John Wiley (1964), New York.
- [5] Naimark, M.A., Linear differential operators, Part I, Frederick Ungar (1967), New York.
- [6] Reid, W.T., Principal solution of non-oscillatory self-adjoint linear differential systems, Pacific J. Math., (80) (1958), 147-169.
- [7] Reid, W.T., Riccati matrix differential equations and non-oscillatory criteria for associated linear differential systems, Pacific J. Math., (13) (1963), 665-685.
- [8] Reid, W.T., Ordinary differential equations, Wiley-Interscience (1971) New York.